File size: 8,595 Bytes
3040ac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import argparse
import pickle
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Union

import numpy as np
import pycolmap
from tqdm import tqdm

from . import logger
from .utils.io import get_keypoints, get_matches
from .utils.parsers import parse_image_lists, parse_retrieval


def do_covisibility_clustering(
    frame_ids: List[int], reconstruction: pycolmap.Reconstruction
):
    clusters = []
    visited = set()
    for frame_id in frame_ids:
        # Check if already labeled
        if frame_id in visited:
            continue

        # New component
        clusters.append([])
        queue = {frame_id}
        while len(queue):
            exploration_frame = queue.pop()

            # Already part of the component
            if exploration_frame in visited:
                continue
            visited.add(exploration_frame)
            clusters[-1].append(exploration_frame)

            observed = reconstruction.images[exploration_frame].points2D
            connected_frames = {
                obs.image_id
                for p2D in observed
                if p2D.has_point3D()
                for obs in reconstruction.points3D[p2D.point3D_id].track.elements
            }
            connected_frames &= set(frame_ids)
            connected_frames -= visited
            queue |= connected_frames

    clusters = sorted(clusters, key=len, reverse=True)
    return clusters


class QueryLocalizer:
    def __init__(self, reconstruction, config=None):
        self.reconstruction = reconstruction
        self.config = config or {}

    def localize(self, points2D_all, points2D_idxs, points3D_id, query_camera):
        points2D = points2D_all[points2D_idxs]
        points3D = [self.reconstruction.points3D[j].xyz for j in points3D_id]
        ret = pycolmap.absolute_pose_estimation(
            points2D,
            points3D,
            query_camera,
            estimation_options=self.config.get("estimation", {}),
            refinement_options=self.config.get("refinement", {}),
        )
        return ret


def pose_from_cluster(
    localizer: QueryLocalizer,
    qname: str,
    query_camera: pycolmap.Camera,
    db_ids: List[int],
    features_path: Path,
    matches_path: Path,
    **kwargs,
):
    kpq = get_keypoints(features_path, qname)
    kpq += 0.5  # COLMAP coordinates

    kp_idx_to_3D = defaultdict(list)
    kp_idx_to_3D_to_db = defaultdict(lambda: defaultdict(list))
    num_matches = 0
    for i, db_id in enumerate(db_ids):
        image = localizer.reconstruction.images[db_id]
        if image.num_points3D == 0:
            logger.debug(f"No 3D points found for {image.name}.")
            continue
        points3D_ids = np.array(
            [p.point3D_id if p.has_point3D() else -1 for p in image.points2D]
        )

        matches, _ = get_matches(matches_path, qname, image.name)
        matches = matches[points3D_ids[matches[:, 1]] != -1]
        num_matches += len(matches)
        for idx, m in matches:
            id_3D = points3D_ids[m]
            kp_idx_to_3D_to_db[idx][id_3D].append(i)
            # avoid duplicate observations
            if id_3D not in kp_idx_to_3D[idx]:
                kp_idx_to_3D[idx].append(id_3D)

    idxs = list(kp_idx_to_3D.keys())
    mkp_idxs = [i for i in idxs for _ in kp_idx_to_3D[i]]
    mp3d_ids = [j for i in idxs for j in kp_idx_to_3D[i]]
    ret = localizer.localize(kpq, mkp_idxs, mp3d_ids, query_camera, **kwargs)
    if ret is not None:
        ret["camera"] = query_camera

    # mostly for logging and post-processing
    mkp_to_3D_to_db = [
        (j, kp_idx_to_3D_to_db[i][j]) for i in idxs for j in kp_idx_to_3D[i]
    ]
    log = {
        "db": db_ids,
        "PnP_ret": ret,
        "keypoints_query": kpq[mkp_idxs],
        "points3D_ids": mp3d_ids,
        "points3D_xyz": None,  # we don't log xyz anymore because of file size
        "num_matches": num_matches,
        "keypoint_index_to_db": (mkp_idxs, mkp_to_3D_to_db),
    }
    return ret, log


def main(
    reference_sfm: Union[Path, pycolmap.Reconstruction],
    queries: Path,
    retrieval: Path,
    features: Path,
    matches: Path,
    results: Path,
    ransac_thresh: int = 12,
    covisibility_clustering: bool = False,
    prepend_camera_name: bool = False,
    config: Dict = None,
):
    assert retrieval.exists(), retrieval
    assert features.exists(), features
    assert matches.exists(), matches

    queries = parse_image_lists(queries, with_intrinsics=True)
    retrieval_dict = parse_retrieval(retrieval)

    logger.info("Reading the 3D model...")
    if not isinstance(reference_sfm, pycolmap.Reconstruction):
        reference_sfm = pycolmap.Reconstruction(reference_sfm)
    db_name_to_id = {img.name: i for i, img in reference_sfm.images.items()}

    config = {
        "estimation": {"ransac": {"max_error": ransac_thresh}},
        **(config or {}),
    }
    localizer = QueryLocalizer(reference_sfm, config)

    cam_from_world = {}
    logs = {
        "features": features,
        "matches": matches,
        "retrieval": retrieval,
        "loc": {},
    }
    logger.info("Starting localization...")
    for qname, qcam in tqdm(queries):
        if qname not in retrieval_dict:
            logger.warning(f"No images retrieved for query image {qname}. Skipping...")
            continue
        db_names = retrieval_dict[qname]
        db_ids = []
        for n in db_names:
            if n not in db_name_to_id:
                logger.warning(f"Image {n} was retrieved but not in database")
                continue
            db_ids.append(db_name_to_id[n])

        if covisibility_clustering:
            clusters = do_covisibility_clustering(db_ids, reference_sfm)
            best_inliers = 0
            best_cluster = None
            logs_clusters = []
            for i, cluster_ids in enumerate(clusters):
                ret, log = pose_from_cluster(
                    localizer, qname, qcam, cluster_ids, features, matches
                )
                if ret is not None and ret["num_inliers"] > best_inliers:
                    best_cluster = i
                    best_inliers = ret["num_inliers"]
                logs_clusters.append(log)
            if best_cluster is not None:
                ret = logs_clusters[best_cluster]["PnP_ret"]
                cam_from_world[qname] = ret["cam_from_world"]
            logs["loc"][qname] = {
                "db": db_ids,
                "best_cluster": best_cluster,
                "log_clusters": logs_clusters,
                "covisibility_clustering": covisibility_clustering,
            }
        else:
            ret, log = pose_from_cluster(
                localizer, qname, qcam, db_ids, features, matches
            )
            if ret is not None:
                cam_from_world[qname] = ret["cam_from_world"]
            else:
                closest = reference_sfm.images[db_ids[0]]
                cam_from_world[qname] = closest.cam_from_world
            log["covisibility_clustering"] = covisibility_clustering
            logs["loc"][qname] = log

    logger.info(f"Localized {len(cam_from_world)} / {len(queries)} images.")
    logger.info(f"Writing poses to {results}...")
    with open(results, "w") as f:
        for query, t in cam_from_world.items():
            qvec = " ".join(map(str, t.rotation.quat[[3, 0, 1, 2]]))
            tvec = " ".join(map(str, t.translation))
            name = query.split("/")[-1]
            if prepend_camera_name:
                name = query.split("/")[-2] + "/" + name
            f.write(f"{name} {qvec} {tvec}\n")

    logs_path = f"{results}_logs.pkl"
    logger.info(f"Writing logs to {logs_path}...")
    # TODO: Resolve pickling issue with pycolmap objects.
    with open(logs_path, "wb") as f:
        pickle.dump(logs, f)
    logger.info("Done!")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--reference_sfm", type=Path, required=True)
    parser.add_argument("--queries", type=Path, required=True)
    parser.add_argument("--features", type=Path, required=True)
    parser.add_argument("--matches", type=Path, required=True)
    parser.add_argument("--retrieval", type=Path, required=True)
    parser.add_argument("--results", type=Path, required=True)
    parser.add_argument("--ransac_thresh", type=float, default=12.0)
    parser.add_argument("--covisibility_clustering", action="store_true")
    parser.add_argument("--prepend_camera_name", action="store_true")
    args = parser.parse_args()
    main(**args.__dict__)