Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,823 Bytes
3040ac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import sys
from pathlib import Path
import torch
from .. import DEVICE, MODEL_REPO_ID, logger
from ..utils.base_model import BaseModel
gim_path = Path(__file__).parents[2] / "third_party/gim"
sys.path.append(str(gim_path))
def load_model(weight_name, checkpoints_path):
# load model
model = None
detector = None
if weight_name == "gim_dkm":
from networks.dkm.models.model_zoo.DKMv3 import DKMv3
model = DKMv3(weights=None, h=672, w=896)
elif weight_name == "gim_loftr":
from networks.loftr.config import get_cfg_defaults
from networks.loftr.loftr import LoFTR
from networks.loftr.misc import lower_config
model = LoFTR(lower_config(get_cfg_defaults())["loftr"])
elif weight_name == "gim_lightglue":
from networks.lightglue.models.matchers.lightglue import LightGlue
from networks.lightglue.superpoint import SuperPoint
detector = SuperPoint(
{
"max_num_keypoints": 2048,
"force_num_keypoints": True,
"detection_threshold": 0.0,
"nms_radius": 3,
"trainable": False,
}
)
model = LightGlue(
{
"filter_threshold": 0.1,
"flash": False,
"checkpointed": True,
}
)
# load state dict
if weight_name == "gim_dkm":
state_dict = torch.load(checkpoints_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
for k in list(state_dict.keys()):
if k.startswith("model."):
state_dict[k.replace("model.", "", 1)] = state_dict.pop(k)
if "encoder.net.fc" in k:
state_dict.pop(k)
model.load_state_dict(state_dict)
elif weight_name == "gim_loftr":
state_dict = torch.load(checkpoints_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
model.load_state_dict(state_dict)
elif weight_name == "gim_lightglue":
state_dict = torch.load(checkpoints_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
for k in list(state_dict.keys()):
if k.startswith("model."):
state_dict.pop(k)
if k.startswith("superpoint."):
state_dict[k.replace("superpoint.", "", 1)] = state_dict.pop(k)
detector.load_state_dict(state_dict)
state_dict = torch.load(checkpoints_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
for k in list(state_dict.keys()):
if k.startswith("superpoint."):
state_dict.pop(k)
if k.startswith("model."):
state_dict[k.replace("model.", "", 1)] = state_dict.pop(k)
model.load_state_dict(state_dict)
# eval mode
if detector is not None:
detector = detector.eval().to(DEVICE)
model = model.eval().to(DEVICE)
return model
class GIM(BaseModel):
default_conf = {
"match_threshold": 0.2,
"checkpoint_dir": gim_path / "weights",
"weights": "gim_dkm",
}
required_inputs = [
"image0",
"image1",
]
ckpt_name_dict = {
"gim_dkm": "gim_dkm_100h.ckpt",
"gim_loftr": "gim_loftr_50h.ckpt",
"gim_lightglue": "gim_lightglue_100h.ckpt",
}
def _init(self, conf):
ckpt_name = self.ckpt_name_dict[conf["weights"]]
model_path = self._download_model(
repo_id=MODEL_REPO_ID,
filename="{}/{}".format(Path(__file__).stem, ckpt_name),
)
self.aspect_ratio = 896 / 672
model = load_model(conf["weights"], model_path)
self.net = model
logger.info("Loaded GIM model")
def pad_image(self, image, aspect_ratio):
new_width = max(image.shape[3], int(image.shape[2] * aspect_ratio))
new_height = max(image.shape[2], int(image.shape[3] / aspect_ratio))
pad_width = new_width - image.shape[3]
pad_height = new_height - image.shape[2]
return torch.nn.functional.pad(
image,
(
pad_width // 2,
pad_width - pad_width // 2,
pad_height // 2,
pad_height - pad_height // 2,
),
)
def rescale_kpts(self, sparse_matches, shape0, shape1):
kpts0 = torch.stack(
(
shape0[1] * (sparse_matches[:, 0] + 1) / 2,
shape0[0] * (sparse_matches[:, 1] + 1) / 2,
),
dim=-1,
)
kpts1 = torch.stack(
(
shape1[1] * (sparse_matches[:, 2] + 1) / 2,
shape1[0] * (sparse_matches[:, 3] + 1) / 2,
),
dim=-1,
)
return kpts0, kpts1
def compute_mask(self, kpts0, kpts1, orig_shape0, orig_shape1):
mask = (
(kpts0[:, 0] > 0)
& (kpts0[:, 1] > 0)
& (kpts1[:, 0] > 0)
& (kpts1[:, 1] > 0)
)
mask &= (
(kpts0[:, 0] <= (orig_shape0[1] - 1))
& (kpts1[:, 0] <= (orig_shape1[1] - 1))
& (kpts0[:, 1] <= (orig_shape0[0] - 1))
& (kpts1[:, 1] <= (orig_shape1[0] - 1))
)
return mask
def _forward(self, data):
# TODO: only support dkm+gim
image0, image1 = (
self.pad_image(data["image0"], self.aspect_ratio),
self.pad_image(data["image1"], self.aspect_ratio),
)
dense_matches, dense_certainty = self.net.match(image0, image1)
sparse_matches, mconf = self.net.sample(
dense_matches, dense_certainty, self.conf["max_keypoints"]
)
kpts0, kpts1 = self.rescale_kpts(
sparse_matches, image0.shape[-2:], image1.shape[-2:]
)
mask = self.compute_mask(
kpts0, kpts1, data["image0"].shape[-2:], data["image1"].shape[-2:]
)
b_ids, i_ids = torch.where(mconf[None])
pred = {
"keypoints0": kpts0[i_ids],
"keypoints1": kpts1[i_ids],
"confidence": mconf[i_ids],
"batch_indexes": b_ids,
}
scores, b_ids = pred["confidence"], pred["batch_indexes"]
kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
pred["confidence"], pred["batch_indexes"] = scores[mask], b_ids[mask]
pred["keypoints0"], pred["keypoints1"] = kpts0[mask], kpts1[mask]
out = {
"keypoints0": pred["keypoints0"],
"keypoints1": pred["keypoints1"],
}
return out
|