Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,899 Bytes
3040ac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import sys
from pathlib import Path
import torch
from .. import MODEL_REPO_ID
from ..utils.base_model import BaseModel
sys.path.append(str(Path(__file__).parent / "../../third_party"))
from TopicFM.src import get_model_cfg
from TopicFM.src.models.topic_fm import TopicFM as _TopicFM
topicfm_path = Path(__file__).parent / "../../third_party/TopicFM"
class TopicFM(BaseModel):
default_conf = {
"weights": "outdoor",
"model_name": "model_best.ckpt",
"match_threshold": 0.2,
"n_sampling_topics": 4,
"max_keypoints": -1,
}
required_inputs = ["image0", "image1"]
def _init(self, conf):
_conf = dict(get_model_cfg())
_conf["match_coarse"]["thr"] = conf["match_threshold"]
_conf["coarse"]["n_samples"] = conf["n_sampling_topics"]
model_path = self._download_model(
repo_id=MODEL_REPO_ID,
filename="{}/{}".format(Path(__file__).stem, self.conf["model_name"]),
)
self.net = _TopicFM(config=_conf)
ckpt_dict = torch.load(model_path, map_location="cpu")
self.net.load_state_dict(ckpt_dict["state_dict"])
def _forward(self, data):
data_ = {
"image0": data["image0"],
"image1": data["image1"],
}
self.net(data_)
pred = {
"keypoints0": data_["mkpts0_f"],
"keypoints1": data_["mkpts1_f"],
"mconf": data_["mconf"],
}
scores = data_["mconf"]
top_k = self.conf["max_keypoints"]
if top_k is not None and len(scores) > top_k:
keep = torch.argsort(scores, descending=True)[:top_k]
scores = scores[keep]
pred["keypoints0"], pred["keypoints1"], pred["mconf"] = (
pred["keypoints0"][keep],
pred["keypoints1"][keep],
scores,
)
return pred
|