File size: 4,241 Bytes
3040ac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
from pathlib import Path

from ... import (
    extract_features,
    localize_sfm,
    logger,
    match_features,
    pairs_from_covisibility,
    pairs_from_retrieval,
    triangulation,
)
from .utils import create_query_list_with_intrinsics, evaluate, scale_sfm_images

SCENES = ["KingsCollege", "OldHospital", "ShopFacade", "StMarysChurch", "GreatCourt"]


def run_scene(images, gt_dir, outputs, results, num_covis, num_loc):
    ref_sfm_sift = gt_dir / "model_train"
    test_list = gt_dir / "list_query.txt"

    outputs.mkdir(exist_ok=True, parents=True)
    ref_sfm = outputs / "sfm_superpoint+superglue"
    ref_sfm_scaled = outputs / "sfm_sift_scaled"
    query_list = outputs / "query_list_with_intrinsics.txt"
    sfm_pairs = outputs / f"pairs-db-covis{num_covis}.txt"
    loc_pairs = outputs / f"pairs-query-netvlad{num_loc}.txt"

    feature_conf = {
        "output": "feats-superpoint-n4096-r1024",
        "model": {
            "name": "superpoint",
            "nms_radius": 3,
            "max_keypoints": 4096,
        },
        "preprocessing": {
            "grayscale": True,
            "resize_max": 1024,
        },
    }
    matcher_conf = match_features.confs["superglue"]
    retrieval_conf = extract_features.confs["netvlad"]

    create_query_list_with_intrinsics(
        gt_dir / "empty_all", query_list, test_list, ext=".txt", image_dir=images
    )
    with open(test_list, "r") as f:
        query_seqs = {q.split("/")[0] for q in f.read().rstrip().split("\n")}

    global_descriptors = extract_features.main(retrieval_conf, images, outputs)
    pairs_from_retrieval.main(
        global_descriptors,
        loc_pairs,
        num_loc,
        db_model=ref_sfm_sift,
        query_prefix=query_seqs,
    )

    features = extract_features.main(feature_conf, images, outputs, as_half=True)
    pairs_from_covisibility.main(ref_sfm_sift, sfm_pairs, num_matched=num_covis)
    sfm_matches = match_features.main(
        matcher_conf, sfm_pairs, feature_conf["output"], outputs
    )

    scale_sfm_images(ref_sfm_sift, ref_sfm_scaled, images)
    triangulation.main(
        ref_sfm, ref_sfm_scaled, images, sfm_pairs, features, sfm_matches
    )

    loc_matches = match_features.main(
        matcher_conf, loc_pairs, feature_conf["output"], outputs
    )

    localize_sfm.main(
        ref_sfm,
        query_list,
        loc_pairs,
        features,
        loc_matches,
        results,
        covisibility_clustering=False,
        prepend_camera_name=True,
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--scenes", default=SCENES, choices=SCENES, nargs="+")
    parser.add_argument("--overwrite", action="store_true")
    parser.add_argument(
        "--dataset",
        type=Path,
        default="datasets/cambridge",
        help="Path to the dataset, default: %(default)s",
    )
    parser.add_argument(
        "--outputs",
        type=Path,
        default="outputs/cambridge",
        help="Path to the output directory, default: %(default)s",
    )
    parser.add_argument(
        "--num_covis",
        type=int,
        default=20,
        help="Number of image pairs for SfM, default: %(default)s",
    )
    parser.add_argument(
        "--num_loc",
        type=int,
        default=10,
        help="Number of image pairs for loc, default: %(default)s",
    )
    args = parser.parse_args()

    gt_dirs = args.dataset / "CambridgeLandmarks_Colmap_Retriangulated_1024px"

    all_results = {}
    for scene in args.scenes:
        logger.info(f'Working on scene "{scene}".')
        results = args.outputs / scene / "results.txt"
        if args.overwrite or not results.exists():
            run_scene(
                args.dataset / scene,
                gt_dirs / scene,
                args.outputs / scene,
                results,
                args.num_covis,
                args.num_loc,
            )
        all_results[scene] = results

    for scene in args.scenes:
        logger.info(f'Evaluate scene "{scene}".')
        evaluate(
            gt_dirs / scene / "empty_all",
            all_results[scene],
            gt_dirs / scene / "list_query.txt",
            ext=".txt",
        )