Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,408 Bytes
3040ac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import sys
from pathlib import Path
from .. import MODEL_REPO_ID, logger
from ..utils.base_model import BaseModel
darkfeat_path = Path(__file__).parent / "../../third_party/DarkFeat"
sys.path.append(str(darkfeat_path))
from darkfeat import DarkFeat as DarkFeat_
class DarkFeat(BaseModel):
default_conf = {
"model_name": "DarkFeat.pth",
"max_keypoints": 1000,
"detection_threshold": 0.5,
"sub_pixel": False,
}
required_inputs = ["image"]
def _init(self, conf):
model_path = self._download_model(
repo_id=MODEL_REPO_ID,
filename="{}/{}".format(Path(__file__).stem, self.conf["model_name"]),
)
logger.info("Loaded DarkFeat model: {}".format(model_path))
self.net = DarkFeat_(model_path)
logger.info("Load DarkFeat model done.")
def _forward(self, data):
pred = self.net({"image": data["image"]})
keypoints = pred["keypoints"]
descriptors = pred["descriptors"]
scores = pred["scores"]
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :]
keypoints = keypoints[idxs, :2]
descriptors = descriptors[:, idxs]
scores = scores[idxs]
return {
"keypoints": keypoints[None], # 1 x N x 2
"scores": scores[None], # 1 x N
"descriptors": descriptors[None], # 1 x 128 x N
}
|