File size: 8,145 Bytes
3040ac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import sys
from pathlib import Path
import numpy as np

import PIL
from PIL import Image
import cv2
import torch
import torch.nn.functional as F
import os

from .. import DEVICE, MODEL_REPO_ID, logger
from ..utils.base_model import BaseModel

sys.path.append(str(Path(__file__).parent / "../../third_party"))
sys.path.append(str(Path(__file__).parent / "../../third_party/MatchAnything"))
from MatchAnything.src.lightning.lightning_loftr import PL_LoFTR
from MatchAnything.src.config.default import get_cfg_defaults

class MatchAnything(BaseModel):
    required_inputs = [
        "image0",
        "image1",
    ]

    def _init(self, conf):
        self.conf = conf
        config = get_cfg_defaults()
        if conf['model_name'] == 'matchanything_eloftr':
            config_path = str(Path(__file__).parent / "../../third_party" / 'MatchAnything' / 'configs/models/eloftr_model.py')
            config.merge_from_file(config_path)
            # Config overwrite:
            if config.LOFTR.COARSE.ROPE:
                assert config.DATASET.NPE_NAME is not None
            if config.DATASET.NPE_NAME is not None:
                if config.DATASET.NPE_NAME == 'megadepth':
                    config.LOFTR.COARSE.NPE = [832, 832, conf['img_resize'], conf['img_resize']]
        elif conf['model_name'] == 'matchanything_roma':
            config_path = str(Path(__file__).parent / "../../third_party" / 'MatchAnything' / 'configs/models/roma_model.py')
            config.merge_from_file(config_path)

            print(f"*****************{DEVICE}, {str(DEVICE) == 'cpu'}**************************")
            if str(DEVICE) == 'cpu':
                config.LOFTR.FP16 = False
                config.ROMA.MODEL.AMP = False
        else:
            raise NotImplementedError
        
        config.METHOD = conf['model_name']
        config.LOFTR.MATCH_COARSE.THR = conf["match_threshold"]

        model_path = Path(__file__).parent / "../../third_party" / 'MatchAnything'/ 'weights' / "{}.ckpt".format(conf["model_name"])

        self.net = PL_LoFTR(config, pretrained_ckpt=model_path, test_mode=True).matcher
        self.net.eval().to(DEVICE)
        logger.info(f"Loading {conf['model_name']} model done")

    def _forward(self, data):
        img0 = data["image0"].cpu().numpy().squeeze() * 255
        img1 = data["image1"].cpu().numpy().squeeze() * 255
        img0 = img0.transpose(1, 2, 0)
        img1 = img1.transpose(1, 2, 0)
        # Get original images:
        img0, img1 = img0.astype("uint8"), img1.astype("uint8")
        img0_size, img1_size = np.array(img0.shape[:2]), np.array(img1.shape[:2])
        img0_gray, img1_gray = np.array(Image.fromarray(img0).convert("L")), np.array(Image.fromarray(img1).convert("L"))
        (img0_gray, hw0_new, mask0), (img1_gray, hw1_new, mask1)= map(lambda x: resize(x, df=32), [img0_gray, img1_gray])

        img0 = torch.from_numpy(img0_gray)[None][None] / 255.
        img1 = torch.from_numpy(img1_gray)[None][None] / 255.
        batch = {'image0': img0, 'image1': img1}
        batch.update({'image0_rgb_origin': data['image0'], 'image1_rgb_origin': data['image1'], 'origin_img_size0': torch.from_numpy(img0_size)[None], 'origin_img_size1': torch.from_numpy(img1_size)[None]})

        if mask0 is not None:
            mask0 = torch.from_numpy(mask0).to(DEVICE)
            mask1 = torch.from_numpy(mask1).to(DEVICE)
            [ts_mask_0, ts_mask_1] = F.interpolate(torch.stack([mask0, mask1], dim=0)[None].float(),
                                                    scale_factor=0.125,
                                                    mode='nearest',
                                                    recompute_scale_factor=False)[0].bool()
            batch.update({"mask0": ts_mask_0[None], "mask1": ts_mask_1[None]})
        batch = dict_to_cuda(batch, device=DEVICE)

        self.net(batch)
        mkpts0 = batch['mkpts0_f'].cpu()
        mkpts1 = batch['mkpts1_f'].cpu()
        mconf = batch['mconf'].cpu()

        if self.conf['model_name'] == 'matchanything_eloftr':
            mkpts0 *= torch.tensor(hw0_new)[[1,0]]
            mkpts1 *= torch.tensor(hw1_new)[[1,0]]

        pred = {
            "keypoints0": mkpts0,
            "keypoints1": mkpts1,
            "mconf": mconf,
        }
        return pred

def resize(img, resize=None, df=8, padding=True):
    w, h = img.shape[1], img.shape[0]
    w_new, h_new = process_resize(w, h, resize=resize, df=df, resize_no_larger_than=False)
    img_new = resize_image(img, (w_new, h_new), interp="pil_LANCZOS").astype('float32')
    h_scale, w_scale = img.shape[0] / img_new.shape[0], img.shape[1] / img_new.shape[1]
    mask = None
    if padding:
        img_new, mask = pad_bottom_right(img_new, max(h_new, w_new), ret_mask=True)
    return img_new, [h_scale, w_scale], mask

def process_resize(w, h, resize=None, df=None, resize_no_larger_than=False):
    if resize is not None:
        assert(len(resize) > 0 and len(resize) <= 2)
        if resize_no_larger_than and (max(h, w) <= max(resize)):
            w_new, h_new = w, h
        else:
            if len(resize) == 1 and resize[0] > -1:  # resize the larger side
                scale = resize[0] / max(h, w)
                w_new, h_new = int(round(w*scale)), int(round(h*scale))
            elif len(resize) == 1 and resize[0] == -1:
                w_new, h_new = w, h
            else:  # len(resize) == 2:
                w_new, h_new = resize[0], resize[1]
    else:
        w_new, h_new = w, h

    if df is not None:
        w_new, h_new = map(lambda x: int(x // df * df), [w_new, h_new])
    return w_new, h_new

def resize_image(image, size, interp):
    if interp.startswith('cv2_'):
        interp = getattr(cv2, 'INTER_'+interp[len('cv2_'):].upper())
        h, w = image.shape[:2]
        if interp == cv2.INTER_AREA and (w < size[0] or h < size[1]):
            interp = cv2.INTER_LINEAR
        resized = cv2.resize(image, size, interpolation=interp)
    elif interp.startswith('pil_'):
        interp = getattr(PIL.Image, interp[len('pil_'):].upper())
        resized = PIL.Image.fromarray(image.astype(np.uint8))
        resized = resized.resize(size, resample=interp)
        resized = np.asarray(resized, dtype=image.dtype)
    else:
        raise ValueError(
            f'Unknown interpolation {interp}.')
    return resized

def pad_bottom_right(inp, pad_size, ret_mask=False):
    assert isinstance(pad_size, int) and pad_size >= max(inp.shape[-2:]), f"{pad_size} < {max(inp.shape[-2:])}"
    mask = None
    if inp.ndim == 2:
        padded = np.zeros((pad_size, pad_size), dtype=inp.dtype)
        padded[:inp.shape[0], :inp.shape[1]] = inp
        if ret_mask:
            mask = np.zeros((pad_size, pad_size), dtype=bool)
            mask[:inp.shape[0], :inp.shape[1]] = True
    elif inp.ndim == 3:
        padded = np.zeros((inp.shape[0], pad_size, pad_size), dtype=inp.dtype)
        padded[:, :inp.shape[1], :inp.shape[2]] = inp
        if ret_mask:
            mask = np.zeros((inp.shape[0], pad_size, pad_size), dtype=bool)
            mask[:, :inp.shape[1], :inp.shape[2]] = True
        mask = mask[0]
    else:
        raise NotImplementedError()
    return padded, mask

def dict_to_cuda(data_dict, device='cuda'):
    data_dict_cuda = {}
    for k, v in data_dict.items():
        if isinstance(v, torch.Tensor):
            data_dict_cuda[k] = v.to(device)
        elif isinstance(v, dict):
            data_dict_cuda[k] = dict_to_cuda(v, device=device)
        elif isinstance(v, list):
            data_dict_cuda[k] = list_to_cuda(v, device=device)
        else:
            data_dict_cuda[k] = v
    return data_dict_cuda

def list_to_cuda(data_list, device='cuda'):
    data_list_cuda = []
    for obj in data_list:
        if isinstance(obj, torch.Tensor):
            data_list_cuda.append(obj.cuda())
        elif isinstance(obj, dict):
            data_list_cuda.append(dict_to_cuda(obj, device=device))
        elif isinstance(obj, list):
            data_list_cuda.append(list_to_cuda(obj, device=device))
        else:
            data_list_cuda.append(obj)
    return data_list_cuda