Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,349 Bytes
3040ac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# server.py
import warnings
from pathlib import Path
from typing import Union
import numpy as np
import ray
import torch
import yaml
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import JSONResponse
from PIL import Image
from ray import serve
from . import ImagesInput, to_base64_nparray
from .core import ImageMatchingAPI
from ..hloc import DEVICE
from ..ui import get_version
warnings.simplefilter("ignore")
app = FastAPI()
if ray.is_initialized():
ray.shutdown()
ray.init(
dashboard_port=8265,
ignore_reinit_error=True,
)
serve.start(
http_options={"host": "0.0.0.0", "port": 8001},
)
num_gpus = 1 if torch.cuda.is_available() else 0
@serve.deployment(
num_replicas=4, ray_actor_options={"num_cpus": 2, "num_gpus": num_gpus}
)
@serve.ingress(app)
class ImageMatchingService:
def __init__(self, conf: dict, device: str):
self.conf = conf
self.api = ImageMatchingAPI(conf=conf, device=device)
@app.get("/")
def root(self):
return "Hello, world!"
@app.get("/version")
async def version(self):
return {"version": get_version()}
@app.post("/v1/match")
async def match(
self, image0: UploadFile = File(...), image1: UploadFile = File(...)
):
"""
Handle the image matching request and return the processed result.
Args:
image0 (UploadFile): The first image file for matching.
image1 (UploadFile): The second image file for matching.
Returns:
JSONResponse: A JSON response containing the filtered match results
or an error message in case of failure.
"""
try:
# Load the images from the uploaded files
image0_array = self.load_image(image0)
image1_array = self.load_image(image1)
# Perform image matching using the API
output = self.api(image0_array, image1_array)
# Keys to skip in the output
skip_keys = ["image0_orig", "image1_orig"]
# Postprocess the output to filter unwanted data
pred = self.postprocess(output, skip_keys)
# Return the filtered prediction as a JSON response
return JSONResponse(content=pred)
except Exception as e:
# Return an error message with status code 500 in case of exception
return JSONResponse(content={"error": str(e)}, status_code=500)
@app.post("/v1/extract")
async def extract(self, input_info: ImagesInput):
"""
Extract keypoints and descriptors from images.
Args:
input_info: An object containing the image data and options.
Returns:
A list of dictionaries containing the keypoints and descriptors.
"""
try:
preds = []
for i, input_image in enumerate(input_info.data):
# Load the image from the input data
image_array = to_base64_nparray(input_image)
# Extract keypoints and descriptors
output = self.api.extract(
image_array,
max_keypoints=input_info.max_keypoints[i],
binarize=input_info.binarize,
)
# Do not return the original image and image_orig
# skip_keys = ["image", "image_orig"]
skip_keys = []
# Postprocess the output
pred = self.postprocess(output, skip_keys)
preds.append(pred)
# Return the list of extracted features
return JSONResponse(content=preds)
except Exception as e:
# Return an error message if an exception occurs
return JSONResponse(content={"error": str(e)}, status_code=500)
def load_image(self, file_path: Union[str, UploadFile]) -> np.ndarray:
"""
Reads an image from a file path or an UploadFile object.
Args:
file_path: A file path or an UploadFile object.
Returns:
A numpy array representing the image.
"""
if isinstance(file_path, str):
file_path = Path(file_path).resolve(strict=False)
else:
file_path = file_path.file
with Image.open(file_path) as img:
image_array = np.array(img)
return image_array
def postprocess(self, output: dict, skip_keys: list, binarize: bool = True) -> dict:
pred = {}
for key, value in output.items():
if key in skip_keys:
continue
if isinstance(value, np.ndarray):
pred[key] = value.tolist()
return pred
def run(self, host: str = "0.0.0.0", port: int = 8001):
import uvicorn
uvicorn.run(app, host=host, port=port)
def read_config(config_path: Path) -> dict:
with open(config_path, "r") as f:
conf = yaml.safe_load(f)
return conf
# api server
conf = read_config(Path(__file__).parent / "config/api.yaml")
service = ImageMatchingService.bind(conf=conf["api"], device=DEVICE)
handle = serve.run(service, route_prefix="/")
# serve run api.server_ray:service
# build to generate config file
# serve build api.server_ray:service -o api/config/ray.yaml
# serve run api/config/ray.yaml
|