Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
import warnings | |
from copy import deepcopy | |
from pathlib import Path | |
import torch | |
from .. import MODEL_REPO_ID, logger | |
tp_path = Path(__file__).parent / "../../third_party" | |
sys.path.append(str(tp_path)) | |
from EfficientLoFTR.src.loftr import LoFTR as ELoFTR_ | |
from EfficientLoFTR.src.loftr import ( | |
full_default_cfg, | |
opt_default_cfg, | |
reparameter, | |
) | |
from ..utils.base_model import BaseModel | |
class ELoFTR(BaseModel): | |
default_conf = { | |
"model_name": "eloftr_outdoor.ckpt", | |
"match_threshold": 0.2, | |
# "sinkhorn_iterations": 20, | |
"max_keypoints": -1, | |
# You can choose model type in ['full', 'opt'] | |
"model_type": "full", # 'full' for best quality, 'opt' for best efficiency | |
# You can choose numerical precision in ['fp32', 'mp', 'fp16']. 'fp16' for best efficiency | |
"precision": "fp32", | |
} | |
required_inputs = ["image0", "image1"] | |
def _init(self, conf): | |
if self.conf["model_type"] == "full": | |
_default_cfg = deepcopy(full_default_cfg) | |
elif self.conf["model_type"] == "opt": | |
_default_cfg = deepcopy(opt_default_cfg) | |
if self.conf["precision"] == "mp": | |
_default_cfg["mp"] = True | |
elif self.conf["precision"] == "fp16": | |
_default_cfg["half"] = True | |
model_path = self._download_model( | |
repo_id=MODEL_REPO_ID, | |
filename="{}/{}".format(Path(__file__).stem, self.conf["model_name"]), | |
) | |
cfg = _default_cfg | |
cfg["match_coarse"]["thr"] = conf["match_threshold"] | |
# cfg["match_coarse"]["skh_iters"] = conf["sinkhorn_iterations"] | |
state_dict = torch.load(model_path, map_location="cpu")["state_dict"] | |
matcher = ELoFTR_(config=cfg) | |
matcher.load_state_dict(state_dict) | |
self.net = reparameter(matcher) | |
if self.conf["precision"] == "fp16": | |
self.net = self.net.half() | |
logger.info(f"Loaded Efficient LoFTR with weights {conf['model_name']}") | |
def _forward(self, data): | |
# For consistency with hloc pairs, we refine kpts in image0! | |
rename = { | |
"keypoints0": "keypoints1", | |
"keypoints1": "keypoints0", | |
"image0": "image1", | |
"image1": "image0", | |
"mask0": "mask1", | |
"mask1": "mask0", | |
} | |
data_ = {rename[k]: v for k, v in data.items()} | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
pred = self.net(data_) | |
pred = { | |
"keypoints0": data_["mkpts0_f"], | |
"keypoints1": data_["mkpts1_f"], | |
} | |
scores = data_["mconf"] | |
top_k = self.conf["max_keypoints"] | |
if top_k is not None and len(scores) > top_k: | |
keep = torch.argsort(scores, descending=True)[:top_k] | |
pred["keypoints0"], pred["keypoints1"] = ( | |
pred["keypoints0"][keep], | |
pred["keypoints1"][keep], | |
) | |
scores = scores[keep] | |
# Switch back indices | |
pred = {(rename[k] if k in rename else k): v for k, v in pred.items()} | |
pred["scores"] = scores | |
return pred | |