MatchAnything / imcui /hloc /matchers /matchanything.py
XingyiHe's picture
init commit
3040ac4
raw
history blame
8.15 kB
import sys
from pathlib import Path
import numpy as np
import PIL
from PIL import Image
import cv2
import torch
import torch.nn.functional as F
import os
from .. import DEVICE, MODEL_REPO_ID, logger
from ..utils.base_model import BaseModel
sys.path.append(str(Path(__file__).parent / "../../third_party"))
sys.path.append(str(Path(__file__).parent / "../../third_party/MatchAnything"))
from MatchAnything.src.lightning.lightning_loftr import PL_LoFTR
from MatchAnything.src.config.default import get_cfg_defaults
class MatchAnything(BaseModel):
required_inputs = [
"image0",
"image1",
]
def _init(self, conf):
self.conf = conf
config = get_cfg_defaults()
if conf['model_name'] == 'matchanything_eloftr':
config_path = str(Path(__file__).parent / "../../third_party" / 'MatchAnything' / 'configs/models/eloftr_model.py')
config.merge_from_file(config_path)
# Config overwrite:
if config.LOFTR.COARSE.ROPE:
assert config.DATASET.NPE_NAME is not None
if config.DATASET.NPE_NAME is not None:
if config.DATASET.NPE_NAME == 'megadepth':
config.LOFTR.COARSE.NPE = [832, 832, conf['img_resize'], conf['img_resize']]
elif conf['model_name'] == 'matchanything_roma':
config_path = str(Path(__file__).parent / "../../third_party" / 'MatchAnything' / 'configs/models/roma_model.py')
config.merge_from_file(config_path)
print(f"*****************{DEVICE}, {str(DEVICE) == 'cpu'}**************************")
if str(DEVICE) == 'cpu':
config.LOFTR.FP16 = False
config.ROMA.MODEL.AMP = False
else:
raise NotImplementedError
config.METHOD = conf['model_name']
config.LOFTR.MATCH_COARSE.THR = conf["match_threshold"]
model_path = Path(__file__).parent / "../../third_party" / 'MatchAnything'/ 'weights' / "{}.ckpt".format(conf["model_name"])
self.net = PL_LoFTR(config, pretrained_ckpt=model_path, test_mode=True).matcher
self.net.eval().to(DEVICE)
logger.info(f"Loading {conf['model_name']} model done")
def _forward(self, data):
img0 = data["image0"].cpu().numpy().squeeze() * 255
img1 = data["image1"].cpu().numpy().squeeze() * 255
img0 = img0.transpose(1, 2, 0)
img1 = img1.transpose(1, 2, 0)
# Get original images:
img0, img1 = img0.astype("uint8"), img1.astype("uint8")
img0_size, img1_size = np.array(img0.shape[:2]), np.array(img1.shape[:2])
img0_gray, img1_gray = np.array(Image.fromarray(img0).convert("L")), np.array(Image.fromarray(img1).convert("L"))
(img0_gray, hw0_new, mask0), (img1_gray, hw1_new, mask1)= map(lambda x: resize(x, df=32), [img0_gray, img1_gray])
img0 = torch.from_numpy(img0_gray)[None][None] / 255.
img1 = torch.from_numpy(img1_gray)[None][None] / 255.
batch = {'image0': img0, 'image1': img1}
batch.update({'image0_rgb_origin': data['image0'], 'image1_rgb_origin': data['image1'], 'origin_img_size0': torch.from_numpy(img0_size)[None], 'origin_img_size1': torch.from_numpy(img1_size)[None]})
if mask0 is not None:
mask0 = torch.from_numpy(mask0).to(DEVICE)
mask1 = torch.from_numpy(mask1).to(DEVICE)
[ts_mask_0, ts_mask_1] = F.interpolate(torch.stack([mask0, mask1], dim=0)[None].float(),
scale_factor=0.125,
mode='nearest',
recompute_scale_factor=False)[0].bool()
batch.update({"mask0": ts_mask_0[None], "mask1": ts_mask_1[None]})
batch = dict_to_cuda(batch, device=DEVICE)
self.net(batch)
mkpts0 = batch['mkpts0_f'].cpu()
mkpts1 = batch['mkpts1_f'].cpu()
mconf = batch['mconf'].cpu()
if self.conf['model_name'] == 'matchanything_eloftr':
mkpts0 *= torch.tensor(hw0_new)[[1,0]]
mkpts1 *= torch.tensor(hw1_new)[[1,0]]
pred = {
"keypoints0": mkpts0,
"keypoints1": mkpts1,
"mconf": mconf,
}
return pred
def resize(img, resize=None, df=8, padding=True):
w, h = img.shape[1], img.shape[0]
w_new, h_new = process_resize(w, h, resize=resize, df=df, resize_no_larger_than=False)
img_new = resize_image(img, (w_new, h_new), interp="pil_LANCZOS").astype('float32')
h_scale, w_scale = img.shape[0] / img_new.shape[0], img.shape[1] / img_new.shape[1]
mask = None
if padding:
img_new, mask = pad_bottom_right(img_new, max(h_new, w_new), ret_mask=True)
return img_new, [h_scale, w_scale], mask
def process_resize(w, h, resize=None, df=None, resize_no_larger_than=False):
if resize is not None:
assert(len(resize) > 0 and len(resize) <= 2)
if resize_no_larger_than and (max(h, w) <= max(resize)):
w_new, h_new = w, h
else:
if len(resize) == 1 and resize[0] > -1: # resize the larger side
scale = resize[0] / max(h, w)
w_new, h_new = int(round(w*scale)), int(round(h*scale))
elif len(resize) == 1 and resize[0] == -1:
w_new, h_new = w, h
else: # len(resize) == 2:
w_new, h_new = resize[0], resize[1]
else:
w_new, h_new = w, h
if df is not None:
w_new, h_new = map(lambda x: int(x // df * df), [w_new, h_new])
return w_new, h_new
def resize_image(image, size, interp):
if interp.startswith('cv2_'):
interp = getattr(cv2, 'INTER_'+interp[len('cv2_'):].upper())
h, w = image.shape[:2]
if interp == cv2.INTER_AREA and (w < size[0] or h < size[1]):
interp = cv2.INTER_LINEAR
resized = cv2.resize(image, size, interpolation=interp)
elif interp.startswith('pil_'):
interp = getattr(PIL.Image, interp[len('pil_'):].upper())
resized = PIL.Image.fromarray(image.astype(np.uint8))
resized = resized.resize(size, resample=interp)
resized = np.asarray(resized, dtype=image.dtype)
else:
raise ValueError(
f'Unknown interpolation {interp}.')
return resized
def pad_bottom_right(inp, pad_size, ret_mask=False):
assert isinstance(pad_size, int) and pad_size >= max(inp.shape[-2:]), f"{pad_size} < {max(inp.shape[-2:])}"
mask = None
if inp.ndim == 2:
padded = np.zeros((pad_size, pad_size), dtype=inp.dtype)
padded[:inp.shape[0], :inp.shape[1]] = inp
if ret_mask:
mask = np.zeros((pad_size, pad_size), dtype=bool)
mask[:inp.shape[0], :inp.shape[1]] = True
elif inp.ndim == 3:
padded = np.zeros((inp.shape[0], pad_size, pad_size), dtype=inp.dtype)
padded[:, :inp.shape[1], :inp.shape[2]] = inp
if ret_mask:
mask = np.zeros((inp.shape[0], pad_size, pad_size), dtype=bool)
mask[:, :inp.shape[1], :inp.shape[2]] = True
mask = mask[0]
else:
raise NotImplementedError()
return padded, mask
def dict_to_cuda(data_dict, device='cuda'):
data_dict_cuda = {}
for k, v in data_dict.items():
if isinstance(v, torch.Tensor):
data_dict_cuda[k] = v.to(device)
elif isinstance(v, dict):
data_dict_cuda[k] = dict_to_cuda(v, device=device)
elif isinstance(v, list):
data_dict_cuda[k] = list_to_cuda(v, device=device)
else:
data_dict_cuda[k] = v
return data_dict_cuda
def list_to_cuda(data_list, device='cuda'):
data_list_cuda = []
for obj in data_list:
if isinstance(obj, torch.Tensor):
data_list_cuda.append(obj.cuda())
elif isinstance(obj, dict):
data_list_cuda.append(dict_to_cuda(obj, device=device))
elif isinstance(obj, list):
data_list_cuda.append(list_to_cuda(obj, device=device))
else:
data_list_cuda.append(obj)
return data_list_cuda