Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from .. import MODEL_REPO_ID, logger | |
from ..utils.base_model import BaseModel | |
thirdparty_path = Path(__file__).parent / "../../third_party" | |
sys.path.append(str(thirdparty_path)) | |
from omniglue.src import omniglue | |
omniglue_path = thirdparty_path / "omniglue" | |
class OmniGlue(BaseModel): | |
default_conf = { | |
"match_threshold": 0.02, | |
"max_keypoints": 2048, | |
} | |
required_inputs = ["image0", "image1"] | |
dino_v2_link_dict = { | |
"dinov2_vitb14_pretrain.pth": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_pretrain.pth" | |
} | |
def _init(self, conf): | |
logger.info("Loading OmniGlue model") | |
og_model_path = self._download_model( | |
repo_id=MODEL_REPO_ID, | |
filename="{}/{}".format(Path(__file__).stem, "omniglue.onnx"), | |
) | |
sp_model_path = self._download_model( | |
repo_id=MODEL_REPO_ID, | |
filename="{}/{}".format(Path(__file__).stem, "sp_v6.onnx"), | |
) | |
dino_model_path = self._download_model( | |
repo_id=MODEL_REPO_ID, | |
filename="{}/{}".format(Path(__file__).stem, "dinov2_vitb14_pretrain.pth"), | |
) | |
self.net = omniglue.OmniGlue( | |
og_export=str(og_model_path), | |
sp_export=str(sp_model_path), | |
dino_export=str(dino_model_path), | |
max_keypoints=self.conf["max_keypoints"], | |
) | |
logger.info("Loaded OmniGlue model done!") | |
def _forward(self, data): | |
image0_rgb_np = data["image0"][0].permute(1, 2, 0).cpu().numpy() * 255 | |
image1_rgb_np = data["image1"][0].permute(1, 2, 0).cpu().numpy() * 255 | |
image0_rgb_np = image0_rgb_np.astype(np.uint8) # RGB, 0-255 | |
image1_rgb_np = image1_rgb_np.astype(np.uint8) # RGB, 0-255 | |
match_kp0, match_kp1, match_confidences = self.net.FindMatches( | |
image0_rgb_np, image1_rgb_np, self.conf["max_keypoints"] | |
) | |
# filter matches | |
match_threshold = self.conf["match_threshold"] | |
keep_idx = [] | |
for i in range(match_kp0.shape[0]): | |
if match_confidences[i] > match_threshold: | |
keep_idx.append(i) | |
scores = torch.from_numpy(match_confidences[keep_idx]).reshape(-1, 1) | |
pred = { | |
"keypoints0": torch.from_numpy(match_kp0[keep_idx]), | |
"keypoints1": torch.from_numpy(match_kp1[keep_idx]), | |
"mconf": scores, | |
} | |
top_k = self.conf["max_keypoints"] | |
if top_k is not None and len(scores) > top_k: | |
keep = torch.argsort(scores, descending=True)[:top_k] | |
scores = scores[keep] | |
pred["keypoints0"], pred["keypoints1"], pred["mconf"] = ( | |
pred["keypoints0"][keep], | |
pred["keypoints1"][keep], | |
scores, | |
) | |
return pred | |