Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
import warnings | |
from pathlib import Path | |
import torch | |
from .. import DEVICE, MODEL_REPO_ID, logger | |
tp_path = Path(__file__).parent / "../../third_party" | |
sys.path.append(str(tp_path)) | |
from XoFTR.src.config.default import get_cfg_defaults | |
from XoFTR.src.utils.misc import lower_config | |
from XoFTR.src.xoftr import XoFTR as XoFTR_ | |
from ..utils.base_model import BaseModel | |
class XoFTR(BaseModel): | |
default_conf = { | |
"model_name": "weights_xoftr_640.ckpt", | |
"match_threshold": 0.3, | |
"max_keypoints": -1, | |
} | |
required_inputs = ["image0", "image1"] | |
def _init(self, conf): | |
# Get default configurations | |
config_ = get_cfg_defaults(inference=True) | |
config_ = lower_config(config_) | |
# Coarse level threshold | |
config_["xoftr"]["match_coarse"]["thr"] = self.conf["match_threshold"] | |
# Fine level threshold | |
config_["xoftr"]["fine"]["thr"] = 0.1 # Default 0.1 | |
# It is posseble to get denser matches | |
# If True, xoftr returns all fine-level matches for each fine-level window (at 1/2 resolution) | |
config_["xoftr"]["fine"]["denser"] = False # Default False | |
# XoFTR model | |
matcher = XoFTR_(config=config_["xoftr"]) | |
model_path = self._download_model( | |
repo_id=MODEL_REPO_ID, | |
filename="{}/{}".format(Path(__file__).stem, self.conf["model_name"]), | |
) | |
# Load model | |
state_dict = torch.load(model_path, map_location="cpu")["state_dict"] | |
matcher.load_state_dict(state_dict, strict=True) | |
matcher = matcher.eval().to(DEVICE) | |
self.net = matcher | |
logger.info(f"Loaded XoFTR with weights {conf['model_name']}") | |
def _forward(self, data): | |
# For consistency with hloc pairs, we refine kpts in image0! | |
rename = { | |
"keypoints0": "keypoints1", | |
"keypoints1": "keypoints0", | |
"image0": "image1", | |
"image1": "image0", | |
"mask0": "mask1", | |
"mask1": "mask0", | |
} | |
data_ = {rename[k]: v for k, v in data.items()} | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
pred = self.net(data_) | |
pred = { | |
"keypoints0": data_["mkpts0_f"], | |
"keypoints1": data_["mkpts1_f"], | |
} | |
scores = data_["mconf_f"] | |
top_k = self.conf["max_keypoints"] | |
if top_k is not None and len(scores) > top_k: | |
keep = torch.argsort(scores, descending=True)[:top_k] | |
pred["keypoints0"], pred["keypoints1"] = ( | |
pred["keypoints0"][keep], | |
pred["keypoints1"][keep], | |
) | |
scores = scores[keep] | |
# Switch back indices | |
pred = {(rename[k] if k in rename else k): v for k, v in pred.items()} | |
pred["scores"] = scores | |
return pred | |