Spaces:
Running
on
Zero
Running
on
Zero
from typing import Tuple | |
from pathlib import Path | |
import numpy as np | |
import cv2 | |
import h5py | |
from .parsers import names_to_pair, names_to_pair_old | |
def read_image(path, grayscale=False): | |
if grayscale: | |
mode = cv2.IMREAD_GRAYSCALE | |
else: | |
mode = cv2.IMREAD_COLOR | |
image = cv2.imread(str(path), mode) | |
if image is None: | |
raise ValueError(f"Cannot read image {path}.") | |
if not grayscale and len(image.shape) == 3: | |
image = image[:, :, ::-1] # BGR to RGB | |
return image | |
def list_h5_names(path): | |
names = [] | |
with h5py.File(str(path), "r", libver="latest") as fd: | |
def visit_fn(_, obj): | |
if isinstance(obj, h5py.Dataset): | |
names.append(obj.parent.name.strip("/")) | |
fd.visititems(visit_fn) | |
return list(set(names)) | |
def get_keypoints( | |
path: Path, name: str, return_uncertainty: bool = False | |
) -> np.ndarray: | |
with h5py.File(str(path), "r", libver="latest") as hfile: | |
dset = hfile[name]["keypoints"] | |
p = dset.__array__() | |
uncertainty = dset.attrs.get("uncertainty") | |
if return_uncertainty: | |
return p, uncertainty | |
return p | |
def find_pair(hfile: h5py.File, name0: str, name1: str): | |
pair = names_to_pair(name0, name1) | |
if pair in hfile: | |
return pair, False | |
pair = names_to_pair(name1, name0) | |
if pair in hfile: | |
return pair, True | |
# older, less efficient format | |
pair = names_to_pair_old(name0, name1) | |
if pair in hfile: | |
return pair, False | |
pair = names_to_pair_old(name1, name0) | |
if pair in hfile: | |
return pair, True | |
raise ValueError( | |
f"Could not find pair {(name0, name1)}... " | |
"Maybe you matched with a different list of pairs? " | |
) | |
def get_matches(path: Path, name0: str, name1: str) -> Tuple[np.ndarray]: | |
with h5py.File(str(path), "r", libver="latest") as hfile: | |
pair, reverse = find_pair(hfile, name0, name1) | |
matches = hfile[pair]["matches0"].__array__() | |
scores = hfile[pair]["matching_scores0"].__array__() | |
idx = np.where(matches != -1)[0] | |
matches = np.stack([idx, matches[idx]], -1) | |
if reverse: | |
matches = np.flip(matches, -1) | |
scores = scores[idx] | |
return matches, scores | |