import torch from ..utils.base_model import BaseModel def find_nn(sim, ratio_thresh, distance_thresh): sim_nn, ind_nn = sim.topk(2 if ratio_thresh else 1, dim=-1, largest=True) dist_nn = 2 * (1 - sim_nn) mask = torch.ones(ind_nn.shape[:-1], dtype=torch.bool, device=sim.device) if ratio_thresh: mask = mask & (dist_nn[..., 0] <= (ratio_thresh**2) * dist_nn[..., 1]) if distance_thresh: mask = mask & (dist_nn[..., 0] <= distance_thresh**2) matches = torch.where(mask, ind_nn[..., 0], ind_nn.new_tensor(-1)) scores = torch.where(mask, (sim_nn[..., 0] + 1) / 2, sim_nn.new_tensor(0)) return matches, scores def mutual_check(m0, m1): inds0 = torch.arange(m0.shape[-1], device=m0.device) loop = torch.gather(m1, -1, torch.where(m0 > -1, m0, m0.new_tensor(0))) ok = (m0 > -1) & (inds0 == loop) m0_new = torch.where(ok, m0, m0.new_tensor(-1)) return m0_new class NearestNeighbor(BaseModel): default_conf = { "ratio_threshold": None, "distance_threshold": None, "do_mutual_check": True, } required_inputs = ["descriptors0", "descriptors1"] def _init(self, conf): pass def _forward(self, data): if data["descriptors0"].size(-1) == 0 or data["descriptors1"].size(-1) == 0: matches0 = torch.full( data["descriptors0"].shape[:2], -1, device=data["descriptors0"].device, ) return { "matches0": matches0, "matching_scores0": torch.zeros_like(matches0), } ratio_threshold = self.conf["ratio_threshold"] if data["descriptors0"].size(-1) == 1 or data["descriptors1"].size(-1) == 1: ratio_threshold = None sim = torch.einsum("bdn,bdm->bnm", data["descriptors0"], data["descriptors1"]) matches0, scores0 = find_nn( sim, ratio_threshold, self.conf["distance_threshold"] ) if self.conf["do_mutual_check"]: matches1, scores1 = find_nn( sim.transpose(1, 2), ratio_threshold, self.conf["distance_threshold"], ) matches0 = mutual_check(matches0, matches1) return { "matches0": matches0, "matching_scores0": scores0, }