# Copyright (c) 2018, ETH Zurich and UNC Chapel Hill. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of # its contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de) # This script is based on an original implementation by True Price. import sqlite3 import sys import numpy as np IS_PYTHON3 = sys.version_info[0] >= 3 MAX_IMAGE_ID = 2**31 - 1 CREATE_CAMERAS_TABLE = """CREATE TABLE IF NOT EXISTS cameras ( camera_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, model INTEGER NOT NULL, width INTEGER NOT NULL, height INTEGER NOT NULL, params BLOB, prior_focal_length INTEGER NOT NULL)""" CREATE_DESCRIPTORS_TABLE = """CREATE TABLE IF NOT EXISTS descriptors ( image_id INTEGER PRIMARY KEY NOT NULL, rows INTEGER NOT NULL, cols INTEGER NOT NULL, data BLOB, FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE)""" CREATE_IMAGES_TABLE = """CREATE TABLE IF NOT EXISTS images ( image_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, name TEXT NOT NULL UNIQUE, camera_id INTEGER NOT NULL, prior_qw REAL, prior_qx REAL, prior_qy REAL, prior_qz REAL, prior_tx REAL, prior_ty REAL, prior_tz REAL, CONSTRAINT image_id_check CHECK(image_id >= 0 and image_id < {}), FOREIGN KEY(camera_id) REFERENCES cameras(camera_id)) """.format(MAX_IMAGE_ID) CREATE_TWO_VIEW_GEOMETRIES_TABLE = """ CREATE TABLE IF NOT EXISTS two_view_geometries ( pair_id INTEGER PRIMARY KEY NOT NULL, rows INTEGER NOT NULL, cols INTEGER NOT NULL, data BLOB, config INTEGER NOT NULL, F BLOB, E BLOB, H BLOB, qvec BLOB, tvec BLOB) """ CREATE_KEYPOINTS_TABLE = """CREATE TABLE IF NOT EXISTS keypoints ( image_id INTEGER PRIMARY KEY NOT NULL, rows INTEGER NOT NULL, cols INTEGER NOT NULL, data BLOB, FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE) """ CREATE_MATCHES_TABLE = """CREATE TABLE IF NOT EXISTS matches ( pair_id INTEGER PRIMARY KEY NOT NULL, rows INTEGER NOT NULL, cols INTEGER NOT NULL, data BLOB)""" CREATE_NAME_INDEX = "CREATE UNIQUE INDEX IF NOT EXISTS index_name ON images(name)" CREATE_ALL = "; ".join( [ CREATE_CAMERAS_TABLE, CREATE_IMAGES_TABLE, CREATE_KEYPOINTS_TABLE, CREATE_DESCRIPTORS_TABLE, CREATE_MATCHES_TABLE, CREATE_TWO_VIEW_GEOMETRIES_TABLE, CREATE_NAME_INDEX, ] ) def image_ids_to_pair_id(image_id1, image_id2): if image_id1 > image_id2: image_id1, image_id2 = image_id2, image_id1 return image_id1 * MAX_IMAGE_ID + image_id2 def pair_id_to_image_ids(pair_id): image_id2 = pair_id % MAX_IMAGE_ID image_id1 = (pair_id - image_id2) / MAX_IMAGE_ID return image_id1, image_id2 def array_to_blob(array): if IS_PYTHON3: return array.tobytes() else: return np.getbuffer(array) def blob_to_array(blob, dtype, shape=(-1,)): if IS_PYTHON3: return np.fromstring(blob, dtype=dtype).reshape(*shape) else: return np.frombuffer(blob, dtype=dtype).reshape(*shape) class COLMAPDatabase(sqlite3.Connection): @staticmethod def connect(database_path): return sqlite3.connect(str(database_path), factory=COLMAPDatabase) def __init__(self, *args, **kwargs): super(COLMAPDatabase, self).__init__(*args, **kwargs) self.create_tables = lambda: self.executescript(CREATE_ALL) self.create_cameras_table = lambda: self.executescript(CREATE_CAMERAS_TABLE) self.create_descriptors_table = lambda: self.executescript( CREATE_DESCRIPTORS_TABLE ) self.create_images_table = lambda: self.executescript(CREATE_IMAGES_TABLE) self.create_two_view_geometries_table = lambda: self.executescript( CREATE_TWO_VIEW_GEOMETRIES_TABLE ) self.create_keypoints_table = lambda: self.executescript(CREATE_KEYPOINTS_TABLE) self.create_matches_table = lambda: self.executescript(CREATE_MATCHES_TABLE) self.create_name_index = lambda: self.executescript(CREATE_NAME_INDEX) def add_camera( self, model, width, height, params, prior_focal_length=False, camera_id=None ): params = np.asarray(params, np.float64) cursor = self.execute( "INSERT INTO cameras VALUES (?, ?, ?, ?, ?, ?)", ( camera_id, model, width, height, array_to_blob(params), prior_focal_length, ), ) return cursor.lastrowid def add_image( self, name, camera_id, prior_q=np.full(4, np.NaN), prior_t=np.full(3, np.NaN), image_id=None, ): cursor = self.execute( "INSERT INTO images VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", ( image_id, name, camera_id, prior_q[0], prior_q[1], prior_q[2], prior_q[3], prior_t[0], prior_t[1], prior_t[2], ), ) return cursor.lastrowid def add_keypoints(self, image_id, keypoints): assert len(keypoints.shape) == 2 assert keypoints.shape[1] in [2, 4, 6] keypoints = np.asarray(keypoints, np.float32) self.execute( "INSERT INTO keypoints VALUES (?, ?, ?, ?)", (image_id,) + keypoints.shape + (array_to_blob(keypoints),), ) def add_descriptors(self, image_id, descriptors): descriptors = np.ascontiguousarray(descriptors, np.uint8) self.execute( "INSERT INTO descriptors VALUES (?, ?, ?, ?)", (image_id,) + descriptors.shape + (array_to_blob(descriptors),), ) def add_matches(self, image_id1, image_id2, matches): assert len(matches.shape) == 2 assert matches.shape[1] == 2 if image_id1 > image_id2: matches = matches[:, ::-1] pair_id = image_ids_to_pair_id(image_id1, image_id2) matches = np.asarray(matches, np.uint32) self.execute( "INSERT INTO matches VALUES (?, ?, ?, ?)", (pair_id,) + matches.shape + (array_to_blob(matches),), ) def add_two_view_geometry( self, image_id1, image_id2, matches, F=np.eye(3), E=np.eye(3), H=np.eye(3), qvec=np.array([1.0, 0.0, 0.0, 0.0]), tvec=np.zeros(3), config=2, ): assert len(matches.shape) == 2 assert matches.shape[1] == 2 if image_id1 > image_id2: matches = matches[:, ::-1] pair_id = image_ids_to_pair_id(image_id1, image_id2) matches = np.asarray(matches, np.uint32) F = np.asarray(F, dtype=np.float64) E = np.asarray(E, dtype=np.float64) H = np.asarray(H, dtype=np.float64) qvec = np.asarray(qvec, dtype=np.float64) tvec = np.asarray(tvec, dtype=np.float64) self.execute( "INSERT INTO two_view_geometries VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", (pair_id,) + matches.shape + ( array_to_blob(matches), config, array_to_blob(F), array_to_blob(E), array_to_blob(H), array_to_blob(qvec), array_to_blob(tvec), ), ) def example_usage(): import os import argparse parser = argparse.ArgumentParser() parser.add_argument("--database_path", default="database.db") args = parser.parse_args() if os.path.exists(args.database_path): print("ERROR: database path already exists -- will not modify it.") return # Open the database. db = COLMAPDatabase.connect(args.database_path) # For convenience, try creating all the tables upfront. db.create_tables() # Create dummy cameras. model1, width1, height1, params1 = ( 0, 1024, 768, np.array((1024.0, 512.0, 384.0)), ) model2, width2, height2, params2 = ( 2, 1024, 768, np.array((1024.0, 512.0, 384.0, 0.1)), ) camera_id1 = db.add_camera(model1, width1, height1, params1) camera_id2 = db.add_camera(model2, width2, height2, params2) # Create dummy images. image_id1 = db.add_image("image1.png", camera_id1) image_id2 = db.add_image("image2.png", camera_id1) image_id3 = db.add_image("image3.png", camera_id2) image_id4 = db.add_image("image4.png", camera_id2) # Create dummy keypoints. # # Note that COLMAP supports: # - 2D keypoints: (x, y) # - 4D keypoints: (x, y, theta, scale) # - 6D affine keypoints: (x, y, a_11, a_12, a_21, a_22) num_keypoints = 1000 keypoints1 = np.random.rand(num_keypoints, 2) * (width1, height1) keypoints2 = np.random.rand(num_keypoints, 2) * (width1, height1) keypoints3 = np.random.rand(num_keypoints, 2) * (width2, height2) keypoints4 = np.random.rand(num_keypoints, 2) * (width2, height2) db.add_keypoints(image_id1, keypoints1) db.add_keypoints(image_id2, keypoints2) db.add_keypoints(image_id3, keypoints3) db.add_keypoints(image_id4, keypoints4) # Create dummy matches. M = 50 matches12 = np.random.randint(num_keypoints, size=(M, 2)) matches23 = np.random.randint(num_keypoints, size=(M, 2)) matches34 = np.random.randint(num_keypoints, size=(M, 2)) db.add_matches(image_id1, image_id2, matches12) db.add_matches(image_id2, image_id3, matches23) db.add_matches(image_id3, image_id4, matches34) # Commit the data to the file. db.commit() # Read and check cameras. rows = db.execute("SELECT * FROM cameras") camera_id, model, width, height, params, prior = next(rows) params = blob_to_array(params, np.float64) assert camera_id == camera_id1 assert model == model1 and width == width1 and height == height1 assert np.allclose(params, params1) camera_id, model, width, height, params, prior = next(rows) params = blob_to_array(params, np.float64) assert camera_id == camera_id2 assert model == model2 and width == width2 and height == height2 assert np.allclose(params, params2) # Read and check keypoints. keypoints = dict( (image_id, blob_to_array(data, np.float32, (-1, 2))) for image_id, data in db.execute("SELECT image_id, data FROM keypoints") ) assert np.allclose(keypoints[image_id1], keypoints1) assert np.allclose(keypoints[image_id2], keypoints2) assert np.allclose(keypoints[image_id3], keypoints3) assert np.allclose(keypoints[image_id4], keypoints4) # Read and check matches. pair_ids = [ # noqa: F841 image_ids_to_pair_id(*pair) for pair in ( (image_id1, image_id2), (image_id2, image_id3), (image_id3, image_id4), ) ] matches = dict( (pair_id_to_image_ids(pair_id), blob_to_array(data, np.uint32, (-1, 2))) for pair_id, data in db.execute("SELECT pair_id, data FROM matches") ) assert np.all(matches[(image_id1, image_id2)] == matches12) assert np.all(matches[(image_id2, image_id3)] == matches23) assert np.all(matches[(image_id3, image_id4)] == matches34) # Clean up. db.close() if os.path.exists(args.database_path): os.remove(args.database_path) if __name__ == "__main__": example_usage()