import pickle import random import numpy as np import pycolmap from matplotlib import cm from .utils.io import read_image from .utils.viz import ( add_text, cm_RdGn, plot_images, plot_keypoints, plot_matches, ) def visualize_sfm_2d( reconstruction, image_dir, color_by="visibility", selected=[], n=1, seed=0, dpi=75, ): assert image_dir.exists() if not isinstance(reconstruction, pycolmap.Reconstruction): reconstruction = pycolmap.Reconstruction(reconstruction) if not selected: image_ids = reconstruction.reg_image_ids() selected = random.Random(seed).sample(image_ids, min(n, len(image_ids))) for i in selected: image = reconstruction.images[i] keypoints = np.array([p.xy for p in image.points2D]) visible = np.array([p.has_point3D() for p in image.points2D]) if color_by == "visibility": color = [(0, 0, 1) if v else (1, 0, 0) for v in visible] text = f"visible: {np.count_nonzero(visible)}/{len(visible)}" elif color_by == "track_length": tl = np.array( [ ( reconstruction.points3D[p.point3D_id].track.length() if p.has_point3D() else 1 ) for p in image.points2D ] ) max_, med_ = np.max(tl), np.median(tl[tl > 1]) tl = np.log(tl) color = cm.jet(tl / tl.max()).tolist() text = f"max/median track length: {max_}/{med_}" elif color_by == "depth": p3ids = [p.point3D_id for p in image.points2D if p.has_point3D()] z = np.array( [ (image.cam_from_world * reconstruction.points3D[j].xyz)[-1] for j in p3ids ] ) z -= z.min() color = cm.jet(z / np.percentile(z, 99.9)) text = f"visible: {np.count_nonzero(visible)}/{len(visible)}" keypoints = keypoints[visible] else: raise NotImplementedError(f"Coloring not implemented: {color_by}.") name = image.name fig = plot_images([read_image(image_dir / name)], dpi=dpi) plot_keypoints([keypoints], colors=[color], ps=4) add_text(0, text) add_text(0, name, pos=(0.01, 0.01), fs=5, lcolor=None, va="bottom") return fig def visualize_loc( results, image_dir, reconstruction=None, db_image_dir=None, selected=[], n=1, seed=0, prefix=None, **kwargs, ): assert image_dir.exists() with open(str(results) + "_logs.pkl", "rb") as f: logs = pickle.load(f) if not selected: queries = list(logs["loc"].keys()) if prefix: queries = [q for q in queries if q.startswith(prefix)] selected = random.Random(seed).sample(queries, min(n, len(queries))) if reconstruction is not None: if not isinstance(reconstruction, pycolmap.Reconstruction): reconstruction = pycolmap.Reconstruction(reconstruction) for qname in selected: loc = logs["loc"][qname] visualize_loc_from_log( image_dir, qname, loc, reconstruction, db_image_dir, **kwargs ) def visualize_loc_from_log( image_dir, query_name, loc, reconstruction=None, db_image_dir=None, top_k_db=2, dpi=75, ): q_image = read_image(image_dir / query_name) if loc.get("covisibility_clustering", False): # select the first, largest cluster if the localization failed loc = loc["log_clusters"][loc["best_cluster"] or 0] inliers = np.array(loc["PnP_ret"]["inliers"]) mkp_q = loc["keypoints_query"] n = len(loc["db"]) if reconstruction is not None: # for each pair of query keypoint and its matched 3D point, # we need to find its corresponding keypoint in each database image # that observes it. We also count the number of inliers in each. kp_idxs, kp_to_3D_to_db = loc["keypoint_index_to_db"] counts = np.zeros(n) dbs_kp_q_db = [[] for _ in range(n)] inliers_dbs = [[] for _ in range(n)] for i, (inl, (p3D_id, db_idxs)) in enumerate(zip(inliers, kp_to_3D_to_db)): track = reconstruction.points3D[p3D_id].track track = {el.image_id: el.point2D_idx for el in track.elements} for db_idx in db_idxs: counts[db_idx] += inl kp_db = track[loc["db"][db_idx]] dbs_kp_q_db[db_idx].append((i, kp_db)) inliers_dbs[db_idx].append(inl) else: # for inloc the database keypoints are already in the logs assert "keypoints_db" in loc assert "indices_db" in loc counts = np.array([np.sum(loc["indices_db"][inliers] == i) for i in range(n)]) # display the database images with the most inlier matches db_sort = np.argsort(-counts) for db_idx in db_sort[:top_k_db]: if reconstruction is not None: db = reconstruction.images[loc["db"][db_idx]] db_name = db.name db_kp_q_db = np.array(dbs_kp_q_db[db_idx]) kp_q = mkp_q[db_kp_q_db[:, 0]] kp_db = np.array([db.points2D[i].xy for i in db_kp_q_db[:, 1]]) inliers_db = inliers_dbs[db_idx] else: db_name = loc["db"][db_idx] kp_q = mkp_q[loc["indices_db"] == db_idx] kp_db = loc["keypoints_db"][loc["indices_db"] == db_idx] inliers_db = inliers[loc["indices_db"] == db_idx] db_image = read_image((db_image_dir or image_dir) / db_name) color = cm_RdGn(inliers_db).tolist() text = f"inliers: {sum(inliers_db)}/{len(inliers_db)}" plot_images([q_image, db_image], dpi=dpi) plot_matches(kp_q, kp_db, color, a=0.1) add_text(0, text) opts = dict(pos=(0.01, 0.01), fs=5, lcolor=None, va="bottom") add_text(0, query_name, **opts) add_text(1, db_name, **opts)