import sys import warnings from copy import deepcopy from pathlib import Path import torch from .. import MODEL_REPO_ID, logger tp_path = Path(__file__).parent / "../../third_party" sys.path.append(str(tp_path)) from EfficientLoFTR.src.loftr import LoFTR as ELoFTR_ from EfficientLoFTR.src.loftr import ( full_default_cfg, opt_default_cfg, reparameter, ) from ..utils.base_model import BaseModel class ELoFTR(BaseModel): default_conf = { "model_name": "eloftr_outdoor.ckpt", "match_threshold": 0.2, # "sinkhorn_iterations": 20, "max_keypoints": -1, # You can choose model type in ['full', 'opt'] "model_type": "full", # 'full' for best quality, 'opt' for best efficiency # You can choose numerical precision in ['fp32', 'mp', 'fp16']. 'fp16' for best efficiency "precision": "fp32", } required_inputs = ["image0", "image1"] def _init(self, conf): if self.conf["model_type"] == "full": _default_cfg = deepcopy(full_default_cfg) elif self.conf["model_type"] == "opt": _default_cfg = deepcopy(opt_default_cfg) if self.conf["precision"] == "mp": _default_cfg["mp"] = True elif self.conf["precision"] == "fp16": _default_cfg["half"] = True model_path = self._download_model( repo_id=MODEL_REPO_ID, filename="{}/{}".format(Path(__file__).stem, self.conf["model_name"]), ) cfg = _default_cfg cfg["match_coarse"]["thr"] = conf["match_threshold"] # cfg["match_coarse"]["skh_iters"] = conf["sinkhorn_iterations"] state_dict = torch.load(model_path, map_location="cpu")["state_dict"] matcher = ELoFTR_(config=cfg) matcher.load_state_dict(state_dict) self.net = reparameter(matcher) if self.conf["precision"] == "fp16": self.net = self.net.half() logger.info(f"Loaded Efficient LoFTR with weights {conf['model_name']}") def _forward(self, data): # For consistency with hloc pairs, we refine kpts in image0! rename = { "keypoints0": "keypoints1", "keypoints1": "keypoints0", "image0": "image1", "image1": "image0", "mask0": "mask1", "mask1": "mask0", } data_ = {rename[k]: v for k, v in data.items()} with warnings.catch_warnings(): warnings.simplefilter("ignore") pred = self.net(data_) pred = { "keypoints0": data_["mkpts0_f"], "keypoints1": data_["mkpts1_f"], } scores = data_["mconf"] top_k = self.conf["max_keypoints"] if top_k is not None and len(scores) > top_k: keep = torch.argsort(scores, descending=True)[:top_k] pred["keypoints0"], pred["keypoints1"] = ( pred["keypoints0"][keep], pred["keypoints1"][keep], ) scores = scores[keep] # Switch back indices pred = {(rename[k] if k in rename else k): v for k, v in pred.items()} pred["scores"] = scores return pred