# server.py import warnings from pathlib import Path from typing import Union import numpy as np import ray import torch import yaml from fastapi import FastAPI, File, UploadFile from fastapi.responses import JSONResponse from PIL import Image from ray import serve from . import ImagesInput, to_base64_nparray from .core import ImageMatchingAPI from ..hloc import DEVICE from ..ui import get_version warnings.simplefilter("ignore") app = FastAPI() if ray.is_initialized(): ray.shutdown() ray.init( dashboard_port=8265, ignore_reinit_error=True, ) serve.start( http_options={"host": "0.0.0.0", "port": 8001}, ) num_gpus = 1 if torch.cuda.is_available() else 0 @serve.deployment( num_replicas=4, ray_actor_options={"num_cpus": 2, "num_gpus": num_gpus} ) @serve.ingress(app) class ImageMatchingService: def __init__(self, conf: dict, device: str): self.conf = conf self.api = ImageMatchingAPI(conf=conf, device=device) @app.get("/") def root(self): return "Hello, world!" @app.get("/version") async def version(self): return {"version": get_version()} @app.post("/v1/match") async def match( self, image0: UploadFile = File(...), image1: UploadFile = File(...) ): """ Handle the image matching request and return the processed result. Args: image0 (UploadFile): The first image file for matching. image1 (UploadFile): The second image file for matching. Returns: JSONResponse: A JSON response containing the filtered match results or an error message in case of failure. """ try: # Load the images from the uploaded files image0_array = self.load_image(image0) image1_array = self.load_image(image1) # Perform image matching using the API output = self.api(image0_array, image1_array) # Keys to skip in the output skip_keys = ["image0_orig", "image1_orig"] # Postprocess the output to filter unwanted data pred = self.postprocess(output, skip_keys) # Return the filtered prediction as a JSON response return JSONResponse(content=pred) except Exception as e: # Return an error message with status code 500 in case of exception return JSONResponse(content={"error": str(e)}, status_code=500) @app.post("/v1/extract") async def extract(self, input_info: ImagesInput): """ Extract keypoints and descriptors from images. Args: input_info: An object containing the image data and options. Returns: A list of dictionaries containing the keypoints and descriptors. """ try: preds = [] for i, input_image in enumerate(input_info.data): # Load the image from the input data image_array = to_base64_nparray(input_image) # Extract keypoints and descriptors output = self.api.extract( image_array, max_keypoints=input_info.max_keypoints[i], binarize=input_info.binarize, ) # Do not return the original image and image_orig # skip_keys = ["image", "image_orig"] skip_keys = [] # Postprocess the output pred = self.postprocess(output, skip_keys) preds.append(pred) # Return the list of extracted features return JSONResponse(content=preds) except Exception as e: # Return an error message if an exception occurs return JSONResponse(content={"error": str(e)}, status_code=500) def load_image(self, file_path: Union[str, UploadFile]) -> np.ndarray: """ Reads an image from a file path or an UploadFile object. Args: file_path: A file path or an UploadFile object. Returns: A numpy array representing the image. """ if isinstance(file_path, str): file_path = Path(file_path).resolve(strict=False) else: file_path = file_path.file with Image.open(file_path) as img: image_array = np.array(img) return image_array def postprocess(self, output: dict, skip_keys: list, binarize: bool = True) -> dict: pred = {} for key, value in output.items(): if key in skip_keys: continue if isinstance(value, np.ndarray): pred[key] = value.tolist() return pred def run(self, host: str = "0.0.0.0", port: int = 8001): import uvicorn uvicorn.run(app, host=host, port=port) def read_config(config_path: Path) -> dict: with open(config_path, "r") as f: conf = yaml.safe_load(f) return conf # api server conf = read_config(Path(__file__).parent / "config/api.yaml") service = ImageMatchingService.bind(conf=conf["api"], device=DEVICE) handle = serve.run(service, route_prefix="/") # serve run api.server_ray:service # build to generate config file # serve build api.server_ray:service -o api/config/ray.yaml # serve run api/config/ray.yaml