import cv2 import mediapipe as mp import math import numpy as np import time import torch from PIL import Image from torchvision import transforms # 定义预处理函数 def pth_processing(fp): class PreprocessInput(torch.nn.Module): def __init__(self): super(PreprocessInput, self).__init__() def forward(self, x): x = x.to(torch.float32) x = torch.flip(x, dims=(0,)) x[0, :, :] -= 91.4953 x[1, :, :] -= 103.8827 x[2, :, :] -= 131.0912 return x def get_img_torch(img): ttransform = transforms.Compose([ transforms.PILToTensor(), PreprocessInput() ]) img = img.resize((224, 224), Image.Resampling.NEAREST) img = ttransform(img) img = torch.unsqueeze(img, 0).to('cuda') return img return get_img_torch(fp) # 定义坐标归一化函数 def norm_coordinates(normalized_x, normalized_y, image_width, image_height): x_px = min(math.floor(normalized_x * image_width), image_width - 1) y_px = min(math.floor(normalized_y * image_height), image_height - 1) return x_px, y_px # 定义获取面部边界框的函数 def get_box(fl, w, h): idx_to_coors = {} for idx, landmark in enumerate(fl.landmark): landmark_px = norm_coordinates(landmark.x, landmark.y, w, h) if landmark_px: idx_to_coors[idx] = landmark_px x_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 0]) y_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 1]) endX = np.max(np.asarray(list(idx_to_coors.values()))[:, 0]) endY = np.max(np.asarray(list(idx_to_coors.values()))[:, 1]) (startX, startY) = (max(0, x_min), max(0, y_min)) (endX, endY) = (min(w - 1, endX), min(h - 1, endY)) return startX, startY, endX, endY # 定义显示情感预测结果的函数 def display_EMO_PRED(img, box, label='', prob=0.0, color=(128, 128, 128), txt_color=(255, 255, 255), line_width=2): lw = line_width or max(round(sum(img.shape) / 2 * 0.003), 2) text2_color = (255, 0, 255) p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3])) cv2.rectangle(img, p1, p2, text2_color, thickness=lw, lineType=cv2.LINE_AA) font = cv2.FONT_HERSHEY_SIMPLEX tf = max(lw - 1, 1) text_fond = (0, 0, 0) # 获取情感标签的文本尺寸 label_width, label_height = cv2.getTextSize(label, font, lw / 3, tf)[0] # 显示情感标签 cv2.putText(img, label, (p1[0], p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font, lw / 3, text_fond, thickness=tf, lineType=cv2.LINE_AA) cv2.putText(img, label, (p1[0], p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font, lw / 3, text2_color, thickness=tf, lineType=cv2.LINE_AA) # 显示情感概率 prob_text = f"{prob:.2f}" prob_width, prob_height = cv2.getTextSize(prob_text, font, lw / 3, tf)[0] cv2.putText(img, prob_text, (p1[0] + label_width + 5, p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font, lw / 3, text_fond, thickness=tf, lineType=cv2.LINE_AA) cv2.putText(img, prob_text, (p1[0] + label_width + 5, p1[1] - round(((p2[0] - p1[0]) * 20) / 360)), font, lw / 3, text2_color, thickness=tf, lineType=cv2.LINE_AA) return img # 定义显示FPS的函数 def display_FPS(img, text, margin=1.0, box_scale=1.0): img_h, img_w, _ = img.shape line_width = int(min(img_h, img_w) * 0.001) # line width thickness = max(int(line_width / 3), 1) # font thickness font_face = cv2.FONT_HERSHEY_SIMPLEX font_color = (0, 0, 0) font_scale = thickness / 1.5 t_w, t_h = cv2.getTextSize(text, font_face, font_scale, None)[0] margin_n = int(t_h * margin) sub_img = img[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale), img_w - t_w - margin_n - int(2 * t_h * box_scale): img_w - margin_n] white_rect = np.ones(sub_img.shape, dtype=np.uint8) * 255 img[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale), img_w - t_w - margin_n - int(2 * t_h * box_scale):img_w - margin_n] = cv2.addWeighted(sub_img, 0.5, white_rect, .5, 1.0) cv2.putText(img=img, text=text, org=(img_w - t_w - margin_n - int(2 * t_h * box_scale) // 2, 0 + margin_n + t_h + int(2 * t_h * box_scale) // 2), fontFace=font_face, fontScale=font_scale, color=font_color, thickness=thickness, lineType=cv2.LINE_AA, bottomLeftOrigin=False) return img def face_emo_analysize(): # 初始化MediaPipe Face Mesh mp_face_mesh = mp.solutions.face_mesh # 加载PyTorch模型 name = '0_66_49_wo_gl' pth_model = torch.jit.load('torchscript_model_0_66_49_wo_gl.pth'.format(name)).to( 'cuda') pth_model.eval() # 定义情感字典 DICT_EMO = {0: 'Neutral', 1: 'Happiness', 2: 'Sadness', 3: 'Surprise', 4: 'Fear', 5: 'Disgust', 6: 'Anger'} # 打开摄像头 cap = cv2.VideoCapture(0) w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = np.round(cap.get(cv2.CAP_PROP_FPS)) # 设置视频写入器 path_save_video = 'result2.mp4' vid_writer = cv2.VideoWriter(path_save_video, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) # 使用MediaPipe Face Mesh进行面部检测 emotion_stats = {} with mp_face_mesh.FaceMesh( max_num_faces=1, refine_landmarks=False, min_detection_confidence=0.5, min_tracking_confidence=0.5) as face_mesh: while cap.isOpened(): t1 = time.time() success, frame = cap.read() if frame is None: break frame_copy = frame.copy() frame_copy.flags.writeable = False frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) results = face_mesh.process(frame_copy) frame_copy.flags.writeable = True if results.multi_face_landmarks: for fl in results.multi_face_landmarks: startX, startY, endX, endY = get_box(fl, w, h) cur_face = frame_copy[startY:endY, startX: endX] # 使用PyTorch模型进行情感预测 cur_face = pth_processing(Image.fromarray(cur_face)) output = torch.nn.functional.softmax(pth_model(cur_face), dim=1).cpu().detach().numpy()[0] # 获取情感类别和概率 cl = np.argmax(output) label = DICT_EMO[cl] prob = output[cl] # 记录情感统计信息 if label not in emotion_stats: emotion_stats[label] = {'start_time': t1, 'duration': 0, 'total_prob': prob, 'count': 1} else: emotion_stats[label]['duration'] += (t1 - emotion_stats[label]['start_time']) emotion_stats[label]['total_prob'] += prob emotion_stats[label]['count'] += 1 emotion_stats[label]['start_time'] = t1 # 显示情感结果和概率 frame = display_EMO_PRED(frame, (startX, startY, endX, endY), label, prob, line_width=3) t2 = time.time() # 显示FPS frame = display_FPS(frame, 'FPS: {0:.1f}'.format(1 / (t2 - t1)), box_scale=.5) # 写入视频 vid_writer.write(frame) # 显示帧 cv2.imshow('Webcam', frame) if cv2.waitKey(1) & 0xFF == ord('\x1b'): break # 释放资源 vid_writer.release() cap.release() cv2.destroyAllWindows() # 打印情感统计信息 for emotion, stats in emotion_stats.items(): avg_prob = stats['total_prob'] / stats['count'] print(f'Emotion: {emotion}, Duration: {stats["duration"]:.2f} seconds, Average Probability: {avg_prob:.2f}') # 将视频转换为GIF from moviepy.editor import VideoFileClip def convert_mp4_to_gif(input_path, output_path, fps=10): clip = VideoFileClip(input_path) clip.write_gif(output_path, fps=fps) #此时我们获得了各表情的持续时间与平均概率,我们可以计算大小,如果负向情绪大于正向情绪那么情感就是负的,再计算平均值即可. positive_emotions = ['Happiness', 'Surprise'] negative_emotions = ['Anger', 'Fear', 'Sadness', 'Disgust'] # 初始化正向和负向情感的统计信息 positive_stats = {'duration': 0, 'total_prob': 0, 'count': 0} negative_stats = {'duration': 0, 'total_prob': 0, 'count': 0} # 统计正向和负向情感的持续时间和概率 for emotion, stats in emotion_stats.items(): if emotion in positive_emotions: positive_stats['duration'] += stats['duration'] positive_stats['total_prob'] += stats['total_prob'] positive_stats['count'] += stats['count'] elif emotion in negative_emotions: negative_stats['duration'] += stats['duration'] negative_stats['total_prob'] += stats['total_prob'] negative_stats['count'] += stats['count'] # 计算正向和负向情感的平均概率 if positive_stats['count'] > 0: positive_avg_prob = positive_stats['total_prob'] / positive_stats['count'] else: positive_avg_prob = 0 if negative_stats['count'] > 0: negative_avg_prob = negative_stats['total_prob'] / negative_stats['count'] else: negative_avg_prob = 0 # 比较正向和负向情感的持续时间 if negative_stats['duration'] > positive_stats['duration']: print(f'负向情感持续时间更长: {negative_stats["duration"]:.2f} seconds') print(f'负向情感的平均概率: {negative_avg_prob:.2f}') outcome = "负向,概率:"+str(negative_avg_prob) return outcome else: print(f'正向情感持续时间更长: {positive_stats["duration"]:.2f} seconds') print(f'正向情感的平均概率: {positive_avg_prob:.2f}') outcome = "正向,概率:"+str(positive_avg_prob) return outcome # 将视频转换为GIF from moviepy.editor import VideoFileClip def convert_mp4_to_gif(input_path, output_path, fps=10): clip = VideoFileClip(input_path) clip.write_gif(output_path, fps=fps) # 示例使用 input_video_path = "result.mp4" output_gif_path = "result.gif" convert_mp4_to_gif(input_video_path, output_gif_path)