import webcolors import random from collections import Counter import numpy as np from torchvision import transforms import cv2 # OpenCV import torch import warnings import os def HWC3(x): assert x.dtype == np.uint8 if x.ndim == 2: x = x[:, :, None] assert x.ndim == 3 H, W, C = x.shape assert C == 1 or C == 3 or C == 4 if C == 3: return x if C == 1: return np.concatenate([x, x, x], axis=2) if C == 4: color = x[:, :, 0:3].astype(np.float32) alpha = x[:, :, 3:4].astype(np.float32) / 255.0 y = color * alpha + 255.0 * (1.0 - alpha) y = y.clip(0, 255).astype(np.uint8) return y def common_input_validate(input_image, output_type, **kwargs): if "img" in kwargs: warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning) input_image = kwargs.pop("img") if "return_pil" in kwargs: warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) output_type = "pil" if kwargs["return_pil"] else "np" if type(output_type) is bool: warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") if output_type: output_type = "pil" if input_image is None: raise ValueError("input_image must be defined.") if not isinstance(input_image, np.ndarray): input_image = np.array(input_image, dtype=np.uint8) output_type = output_type or "pil" else: output_type = output_type or "np" return (input_image, output_type) def cv2_resize_shortest_edge(image, size): h, w = image.shape[:2] if h < w: new_h = size new_w = int(round(w / h * size)) else: new_w = size new_h = int(round(h / w * size)) resized_image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_AREA) return resized_image def apply_color(img, res=512): img = cv2_resize_shortest_edge(img, res) h, w = img.shape[:2] input_img_color = cv2.resize(img, (w//64, h//64), interpolation=cv2.INTER_CUBIC) input_img_color = cv2.resize(input_img_color, (w, h), interpolation=cv2.INTER_NEAREST) return input_img_color UPSCALE_METHODS = ["INTER_NEAREST", "INTER_LINEAR", "INTER_AREA", "INTER_CUBIC", "INTER_LANCZOS4"] def get_upscale_method(method_str): assert method_str in UPSCALE_METHODS, f"Method {method_str} not found in {UPSCALE_METHODS}" return getattr(cv2, method_str) def pad64(x): return int(np.ceil(float(x) / 64.0) * 64 - x) def safer_memory(x): # Fix many MAC/AMD problems return np.ascontiguousarray(x.copy()).copy() def resize_image_with_pad(input_image, resolution, upscale_method = "", skip_hwc3=False, mode='edge'): if skip_hwc3: img = input_image else: img = HWC3(input_image) H_raw, W_raw, _ = img.shape if resolution == 0: return img, lambda x: x k = float(resolution) / float(min(H_raw, W_raw)) H_target = int(np.round(float(H_raw) * k)) W_target = int(np.round(float(W_raw) * k)) img = cv2.resize(img, (W_target, H_target), interpolation=get_upscale_method(upscale_method) if k > 1 else cv2.INTER_AREA) H_pad, W_pad = pad64(H_target), pad64(W_target) img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode=mode) def remove_pad(x): return safer_memory(x[:H_target, :W_target, ...]) return safer_memory(img_padded), remove_pad def draw_contour(img, mask): mask_np = mask.numpy().astype(np.uint8) * 255 img_np = img.numpy() img_np = img_np.astype(np.uint8) img_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) # 膨胀掩码 kernel = np.ones((5, 5), np.uint8) mask_dilated = cv2.dilate(mask_np, kernel, iterations=3) contours, _ = cv2.findContours(mask_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: cv2.drawContours(img_bgr, [contour], -1, (0, 0, 255), thickness=10) # 红色线条绘制轮廓 img_np = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) # 转换回tensor transform = transforms.ToTensor() img_tensor = transform(img_np) img_tensor = img_tensor.permute(1, 2, 0) return img_tensor.unsqueeze(0) def get_colored_contour(img1, img2, threshold=10): diff = torch.abs(img1 - img2).float() diff_gray = torch.mean(diff, dim=-1) # 阈值处理以生成二进制掩码 mask = diff_gray > threshold return draw_contour(img2, mask), mask def closest_colour(requested_colour): min_colours = {} for key, name in webcolors.CSS3_HEX_TO_NAMES.items(): r_c, g_c, b_c = webcolors.hex_to_rgb(key) rd = (r_c - requested_colour[0].item()) ** 2 gd = (g_c - requested_colour[1].item()) ** 2 bd = (b_c - requested_colour[2].item()) ** 2 min_colours[(rd + gd + bd)] = name return min_colours[min(min_colours.keys())] def rgb_to_name(rgb_tuple): try: return webcolors.rgb_to_name(rgb_tuple) except ValueError: closest_name = closest_colour(rgb_tuple) return closest_name def find_different_colors(img1, img2, threshold=10): img1 = img1.to(torch.uint8) img2 = img2.to(torch.uint8) # 计算图像之间的绝对差异 diff = torch.abs(img1 - img2).float().mean(dim=-1) # 找到大于阈值的差异区域 diff_mask = diff > threshold diff_indices = torch.nonzero(diff_mask, as_tuple=True) if len(diff_indices[0]) > 100: sampled_indices = random.sample(range(len(diff_indices[0])), 100) sampled_diff_indices = (diff_indices[0][sampled_indices], diff_indices[1][sampled_indices]) else: sampled_diff_indices = diff_indices # 提取不同区域的颜色 diff_colors = img2[sampled_diff_indices[0], sampled_diff_indices[1], :] # 将颜色值转换为颜色名称 color_names = [rgb_to_name(tuple(color)) for color in diff_colors] name_counter = Counter(color_names) # 过滤出现超过10次的颜色 filtered_colors = {name: count for name, count in name_counter.items() if count > 10} # 按出现次数从大到小排序 sorted_color_names = [name for name, count in sorted(filtered_colors.items(), key=lambda item: item[1], reverse=True)] if len(sorted_color_names) >= 3: return "colorful" unique_color_names_str = ', '.join(sorted_color_names) return unique_color_names_str def get_bounding_box_from_mask(mask, padded=False): # Ensure the mask is a binary mask (0s and 1s) mask = mask.squeeze() rows, cols = torch.where(mask > 0.5) # If there are no '1's in the mask, return None or an appropriate bounding box like (0,0,0,0) if len(rows) == 0 or len(cols) == 0: return (0, 0, 0, 0) height, width = mask.shape if padded: padded_size = max(width, height) # 检查填充发生在哪个方向 if width < height: # 宽度较小,填充发生在宽度上 offset_x = (padded_size - width) / 2 offset_y = 0 else: # 高度较小,填充发生在高度上 offset_y = (padded_size - height) / 2 offset_x = 0 # Find the bounding box coordinates top_left_x = round(float((torch.min(cols).item() + offset_x) / padded_size), 3) bottom_right_x = round(float((torch.max(cols).item() + offset_x) / padded_size), 3) top_left_y = round(float((torch.min(rows).item() + offset_y) / padded_size), 3) bottom_right_y = round(float((torch.max(rows).item() + offset_y) / padded_size), 3) else: offset_x = 0 offset_y = 0 top_left_x = round(float(torch.min(cols).item() / width), 3) bottom_right_x = round(float(torch.max(cols).item() / width), 3) top_left_y = round(float(torch.min(rows).item() / height), 3) bottom_right_y = round(float(torch.max(rows).item() / height), 3) return (top_left_x, top_left_y, bottom_right_x, bottom_right_y)