import gradio as gr import spaces import os import spaces import torch from transformers import GemmaTokenizer, AutoModelForCausalLM from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread # Set an environment variable HF_TOKEN = os.environ.get("HF_TOKEN", None) zero = torch.Tensor([0]).cuda() print(zero.device) # <-- 'cpu' 🤔 DESCRIPTION = ''' ''' LICENSE = """
--- Built with TAIDE-LX-8B-Chat """ css = """ h1 { text-align: center; display: block; } #duplicate-button { margin: auto; color: white; background: #1565c0; border-radius: 100vh; } """ # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("taide/Llama3-TAIDE-LX-8B-Chat-Alpha1") model = AutoModelForCausalLM.from_pretrained("taide/Llama3-TAIDE-LX-8B-Chat-Alpha1") # to("cuda:0") terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] @spaces.GPU(duration=120) def chat_taide_8b(message: str, history: list, temperature: float, max_new_tokens: int ) -> str: """ Generate a streaming response using the llama3-8b model. Args: message (str): The input message. history (list): The conversation history used by ChatInterface. temperature (float): The temperature for generating the response. max_new_tokens (int): The maximum number of new tokens to generate. Returns: str: The generated response. """ conversation = [] for user, assistant in history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids= input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, eos_token_id=terminators, ) # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. if temperature == 0: generate_kwargs['do_sample'] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) #print(outputs) yield "".join(outputs) # Gradio block chatbot=gr.Chatbot(height=450, label='Gradio ChatInterface') with gr.Blocks(fill_height=True, css=css) as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") gr.ChatInterface( fn=chat_taide_8b, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider(minimum=0, maximum=1, step=0.1, value=0.95, label="Temperature", render=False), gr.Slider(minimum=128, maximum=4096, step=1, value=512, label="Max new tokens", render=False ), ], examples=[ ['請以以下內容為基礎,寫一篇文章:撰寫一篇作文,題目為《一張舊照片》,內容要求為:選擇一張令你印象深刻的照片,說明令你印象深刻的原因,並描述照片中的影像及背後的故事。記錄成長的過程、與他人的情景、環境變遷和美麗的景色。'], ['請以品牌經理的身份,給廣告公司的創意總監寫一封信,提出對於新產品廣告宣傳活動的創意建議。'], ['以下提供英文內容,請幫我翻譯成中文。Dongshan coffee is famous for its unique position, and the constant refinement of production methods. The flavor is admired by many caffeine afficionados.'], ], cache_examples=False, ) gr.Markdown(LICENSE) if __name__ == "__main__": demo.launch()