Loomisgitarrist commited on
Commit
3f3d4fe
Β·
verified Β·
1 Parent(s): 810e590

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +114 -131
app.py CHANGED
@@ -9,9 +9,8 @@ from transformers import (
9
  CLIPTextModel,
10
  CLIPTextModelWithProjection,
11
  )
12
- from diffusers import DDPMScheduler,AutoencoderKL
13
  from typing import List
14
-
15
  import torch
16
  import os
17
  from transformers import AutoTokenizer
@@ -22,10 +21,9 @@ from torchvision import transforms
22
  import apply_net
23
  from preprocess.humanparsing.run_parsing import Parsing
24
  from preprocess.openpose.run_openpose import OpenPose
25
- from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
26
  from torchvision.transforms.functional import to_pil_image
27
 
28
-
29
  def pil_to_binary_mask(pil_image, threshold=0):
30
  np_image = np.array(pil_image)
31
  grayscale_image = Image.fromarray(np_image).convert("L")
@@ -33,14 +31,14 @@ def pil_to_binary_mask(pil_image, threshold=0):
33
  mask = np.zeros(binary_mask.shape, dtype=np.uint8)
34
  for i in range(binary_mask.shape[0]):
35
  for j in range(binary_mask.shape[1]):
36
- if binary_mask[i,j] == True :
37
  mask[i,j] = 1
38
- mask = (mask*255).astype(np.uint8)
39
  output_mask = Image.fromarray(mask)
40
  return output_mask
41
 
 
42
 
43
- base_path = 'yisol/IDM-VTON'
44
  example_path = os.path.join(os.path.dirname(__file__), 'example')
45
 
46
  unet = UNet2DConditionModel.from_pretrained(
@@ -49,18 +47,21 @@ unet = UNet2DConditionModel.from_pretrained(
49
  torch_dtype=torch.float16,
50
  )
51
  unet.requires_grad_(False)
 
52
  tokenizer_one = AutoTokenizer.from_pretrained(
53
  base_path,
54
  subfolder="tokenizer",
55
  revision=None,
56
  use_fast=False,
57
  )
 
58
  tokenizer_two = AutoTokenizer.from_pretrained(
59
  base_path,
60
  subfolder="tokenizer_2",
61
  revision=None,
62
  use_fast=False,
63
  )
 
64
  noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
65
 
66
  text_encoder_one = CLIPTextModel.from_pretrained(
@@ -68,22 +69,24 @@ text_encoder_one = CLIPTextModel.from_pretrained(
68
  subfolder="text_encoder",
69
  torch_dtype=torch.float16,
70
  )
 
71
  text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
72
  base_path,
73
  subfolder="text_encoder_2",
74
  torch_dtype=torch.float16,
75
  )
 
76
  image_encoder = CLIPVisionModelWithProjection.from_pretrained(
77
  base_path,
78
  subfolder="image_encoder",
79
  torch_dtype=torch.float16,
80
- )
 
81
  vae = AutoencoderKL.from_pretrained(base_path,
82
  subfolder="vae",
83
  torch_dtype=torch.float16,
84
  )
85
 
86
- # "stabilityai/stable-diffusion-xl-base-1.0",
87
  UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
88
  base_path,
89
  subfolder="unet_encoder",
@@ -99,39 +102,39 @@ vae.requires_grad_(False)
99
  unet.requires_grad_(False)
100
  text_encoder_one.requires_grad_(False)
101
  text_encoder_two.requires_grad_(False)
 
102
  tensor_transfrom = transforms.Compose(
103
- [
104
- transforms.ToTensor(),
105
- transforms.Normalize([0.5], [0.5]),
106
- ]
107
- )
108
 
109
  pipe = TryonPipeline.from_pretrained(
110
- base_path,
111
- unet=unet,
112
- vae=vae,
113
- feature_extractor= CLIPImageProcessor(),
114
- text_encoder = text_encoder_one,
115
- text_encoder_2 = text_encoder_two,
116
- tokenizer = tokenizer_one,
117
- tokenizer_2 = tokenizer_two,
118
- scheduler = noise_scheduler,
119
- image_encoder=image_encoder,
120
- torch_dtype=torch.float16,
121
  )
122
  pipe.unet_encoder = UNet_Encoder
123
 
124
  @spaces.GPU
125
- def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
126
  device = "cuda"
127
-
128
  openpose_model.preprocessor.body_estimation.model.to(device)
129
  pipe.to(device)
130
  pipe.unet_encoder.to(device)
131
 
132
- garm_img= garm_img.convert("RGB").resize((768,1024))
133
- human_img_orig = dict["background"].convert("RGB")
134
-
135
  if is_checked_crop:
136
  width, height = human_img_orig.size
137
  target_width = int(min(width, height * (3 / 4)))
@@ -142,37 +145,29 @@ def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_ste
142
  bottom = (height + target_height) / 2
143
  cropped_img = human_img_orig.crop((left, top, right, bottom))
144
  crop_size = cropped_img.size
145
- human_img = cropped_img.resize((768,1024))
146
  else:
147
- human_img = human_img_orig.resize((768,1024))
148
-
149
 
150
  if is_checked:
151
- keypoints = openpose_model(human_img.resize((384,512)))
152
- model_parse, _ = parsing_model(human_img.resize((384,512)))
153
  mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
154
- mask = mask.resize((768,1024))
155
  else:
156
  mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
157
- # mask = transforms.ToTensor()(mask)
158
- # mask = mask.unsqueeze(0)
159
- mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
160
- mask_gray = to_pil_image((mask_gray+1.0)/2.0)
161
-
162
 
163
- human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
164
  human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
165
-
166
-
167
 
168
  args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
169
- # verbosity = getattr(args, "verbosity", None)
170
- pose_img = args.func(args,human_img_arg)
171
- pose_img = pose_img[:,:,::-1]
172
- pose_img = Image.fromarray(pose_img).resize((768,1024))
173
-
174
  with torch.no_grad():
175
- # Extract the images
176
  with torch.cuda.amp.autocast():
177
  with torch.no_grad():
178
  prompt = "model is wearing " + garment_des
@@ -189,87 +184,82 @@ def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_ste
189
  do_classifier_free_guidance=True,
190
  negative_prompt=negative_prompt,
191
  )
192
-
193
- prompt = "a photo of " + garment_des
194
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
195
- if not isinstance(prompt, List):
196
- prompt = [prompt] * 1
197
- if not isinstance(negative_prompt, List):
198
- negative_prompt = [negative_prompt] * 1
199
- with torch.inference_mode():
200
- (
201
- prompt_embeds_c,
202
- _,
203
- _,
204
- _,
205
- ) = pipe.encode_prompt(
206
- prompt,
207
- num_images_per_prompt=1,
208
- do_classifier_free_guidance=False,
209
- negative_prompt=negative_prompt,
210
- )
211
-
212
-
213
-
214
- pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
215
- garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
216
- generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
217
- images = pipe(
218
- prompt_embeds=prompt_embeds.to(device,torch.float16),
219
- negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
220
- pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
221
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
222
- num_inference_steps=denoise_steps,
223
- generator=generator,
224
- strength = 1.0,
225
- pose_img = pose_img.to(device,torch.float16),
226
- text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
227
- cloth = garm_tensor.to(device,torch.float16),
228
- mask_image=mask,
229
- image=human_img,
230
- height=1024,
231
- width=768,
232
- ip_adapter_image = garm_img.resize((768,1024)),
233
- guidance_scale=2.0,
234
- )[0]
235
 
236
  if is_checked_crop:
237
- out_img = images[0].resize(crop_size)
238
- human_img_orig.paste(out_img, (int(left), int(top)))
239
  return human_img_orig, mask_gray
240
  else:
241
  return images[0], mask_gray
242
- # return images[0], mask_gray
243
 
244
- garm_list = os.listdir(os.path.join(example_path,"cloth"))
245
- garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
246
 
247
- human_list = os.listdir(os.path.join(example_path,"human"))
248
- human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
249
 
250
  human_ex_list = []
251
  for ex_human in human_list_path:
252
- ex_dict= {}
253
  ex_dict['background'] = ex_human
254
  ex_dict['layers'] = None
255
  ex_dict['composite'] = None
256
  human_ex_list.append(ex_dict)
257
 
258
- ##default human
259
-
260
-
261
  image_blocks = gr.Blocks().queue()
 
262
  with image_blocks as demo:
263
- gr.Markdown("## IDM-VTON πŸ‘•πŸ‘”πŸ‘š")
264
- gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
 
265
  with gr.Row():
266
  with gr.Column():
267
  imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
268
  with gr.Row():
269
- is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
270
  with gr.Row():
271
- is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
272
-
273
  example = gr.Examples(
274
  inputs=imgs,
275
  examples_per_page=10,
@@ -284,30 +274,23 @@ with image_blocks as demo:
284
  example = gr.Examples(
285
  inputs=garm_img,
286
  examples_per_page=8,
287
- examples=garm_list_path)
288
- with gr.Column():
289
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
290
- masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
291
- with gr.Column():
292
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
293
- image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
294
-
295
-
296
-
297
-
298
- with gr.Column():
299
- try_button = gr.Button(value="Try-on")
300
- with gr.Accordion(label="Advanced Settings", open=False):
301
- with gr.Row():
302
- denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
303
- seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
304
-
305
-
306
 
307
- try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
 
 
308
 
309
-
 
310
 
 
 
 
 
 
 
311
 
312
- image_blocks.launch()
313
 
 
 
9
  CLIPTextModel,
10
  CLIPTextModelWithProjection,
11
  )
12
+ from diffusers import DDPMScheduler, AutoencoderKL
13
  from typing import List
 
14
  import torch
15
  import os
16
  from transformers import AutoTokenizer
 
21
  import apply_net
22
  from preprocess.humanparsing.run_parsing import Parsing
23
  from preprocess.openpose.run_openpose import OpenPose
24
+ from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
25
  from torchvision.transforms.functional import to_pil_image
26
 
 
27
  def pil_to_binary_mask(pil_image, threshold=0):
28
  np_image = np.array(pil_image)
29
  grayscale_image = Image.fromarray(np_image).convert("L")
 
31
  mask = np.zeros(binary_mask.shape, dtype=np.uint8)
32
  for i in range(binary_mask.shape[0]):
33
  for j in range(binary_mask.shape[1]):
34
+ if binary_mask[i,j] == True:
35
  mask[i,j] = 1
36
+ mask = (mask * 255).astype(np.uint8)
37
  output_mask = Image.fromarray(mask)
38
  return output_mask
39
 
40
+ base_path = 'yisol/IDM-VTON'
41
 
 
42
  example_path = os.path.join(os.path.dirname(__file__), 'example')
43
 
44
  unet = UNet2DConditionModel.from_pretrained(
 
47
  torch_dtype=torch.float16,
48
  )
49
  unet.requires_grad_(False)
50
+
51
  tokenizer_one = AutoTokenizer.from_pretrained(
52
  base_path,
53
  subfolder="tokenizer",
54
  revision=None,
55
  use_fast=False,
56
  )
57
+
58
  tokenizer_two = AutoTokenizer.from_pretrained(
59
  base_path,
60
  subfolder="tokenizer_2",
61
  revision=None,
62
  use_fast=False,
63
  )
64
+
65
  noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
66
 
67
  text_encoder_one = CLIPTextModel.from_pretrained(
 
69
  subfolder="text_encoder",
70
  torch_dtype=torch.float16,
71
  )
72
+
73
  text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
74
  base_path,
75
  subfolder="text_encoder_2",
76
  torch_dtype=torch.float16,
77
  )
78
+
79
  image_encoder = CLIPVisionModelWithProjection.from_pretrained(
80
  base_path,
81
  subfolder="image_encoder",
82
  torch_dtype=torch.float16,
83
+ )
84
+
85
  vae = AutoencoderKL.from_pretrained(base_path,
86
  subfolder="vae",
87
  torch_dtype=torch.float16,
88
  )
89
 
 
90
  UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
91
  base_path,
92
  subfolder="unet_encoder",
 
102
  unet.requires_grad_(False)
103
  text_encoder_one.requires_grad_(False)
104
  text_encoder_two.requires_grad_(False)
105
+
106
  tensor_transfrom = transforms.Compose(
107
+ [
108
+ transforms.ToTensor(),
109
+ transforms.Normalize([0.5], [0.5]),
110
+ ]
111
+ )
112
 
113
  pipe = TryonPipeline.from_pretrained(
114
+ base_path,
115
+ unet=unet,
116
+ vae=vae,
117
+ feature_extractor=CLIPImageProcessor(),
118
+ text_encoder=text_encoder_one,
119
+ text_encoder_2=text_encoder_two,
120
+ tokenizer=tokenizer_one,
121
+ tokenizer_2=tokenizer_two,
122
+ scheduler=noise_scheduler,
123
+ image_encoder=image_encoder,
124
+ torch_dtype=torch.float16,
125
  )
126
  pipe.unet_encoder = UNet_Encoder
127
 
128
  @spaces.GPU
129
+ def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
130
  device = "cuda"
 
131
  openpose_model.preprocessor.body_estimation.model.to(device)
132
  pipe.to(device)
133
  pipe.unet_encoder.to(device)
134
 
135
+ garm_img = garm_img.convert("RGB").resize((768, 1024))
136
+ human_img_orig = dict["background"].convert("RGB")
137
+
138
  if is_checked_crop:
139
  width, height = human_img_orig.size
140
  target_width = int(min(width, height * (3 / 4)))
 
145
  bottom = (height + target_height) / 2
146
  cropped_img = human_img_orig.crop((left, top, right, bottom))
147
  crop_size = cropped_img.size
148
+ human_img = cropped_img.resize((768, 1024))
149
  else:
150
+ human_img = human_img_orig.resize((768, 1024))
 
151
 
152
  if is_checked:
153
+ keypoints = openpose_model(human_img.resize((384, 512)))
154
+ model_parse, _ = parsing_model(human_img.resize((384, 512)))
155
  mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
156
+ mask = mask.resize((768, 1024))
157
  else:
158
  mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
159
+ mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
160
+ mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
 
 
 
161
 
162
+ human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
163
  human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
 
 
164
 
165
  args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
166
+ pose_img = args.func(args, human_img_arg)
167
+ pose_img = pose_img[:, :, ::-1]
168
+ pose_img = Image.fromarray(pose_img).resize((768, 1024))
169
+
 
170
  with torch.no_grad():
 
171
  with torch.cuda.amp.autocast():
172
  with torch.no_grad():
173
  prompt = "model is wearing " + garment_des
 
184
  do_classifier_free_guidance=True,
185
  negative_prompt=negative_prompt,
186
  )
187
+
188
+ prompt = "a photo of " + garment_des
189
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
190
+ if not isinstance(prompt, List):
191
+ prompt = [prompt] * 1
192
+ if not isinstance(negative_prompt, List):
193
+ negative_prompt = [negative_prompt] * 1
194
+ with torch.inference_mode():
195
+ (
196
+ prompt_embeds_c,
197
+ _,
198
+ _,
199
+ _,
200
+ ) = pipe.encode_prompt(
201
+ prompt,
202
+ num_images_per_prompt=1,
203
+ do_classifier_free_guidance=False,
204
+ negative_prompt=negative_prompt,
205
+ )
206
+
207
+ pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
208
+ garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
209
+ generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
210
+ images = pipe(
211
+ prompt_embeds=prompt_embeds.to(device, torch.float16),
212
+ negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
213
+ pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
214
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
215
+ num_inference_steps=denoise_steps,
216
+ generator=generator,
217
+ strength=1.0,
218
+ pose_img=pose_img.to(device, torch.float16),
219
+ text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
220
+ cloth=garm_tensor.to(device, torch.float16),
221
+ mask_image=mask,
222
+ image=human_img,
223
+ height=1024,
224
+ width=768,
225
+ ip_adapter_image=garm_img.resize((768, 1024)),
226
+ guidance_scale=2.0,
227
+ )[0]
 
 
228
 
229
  if is_checked_crop:
230
+ out_img = images[0].resize(crop_size)
231
+ human_img_orig.paste(out_img, (int(left), int(top)))
232
  return human_img_orig, mask_gray
233
  else:
234
  return images[0], mask_gray
 
235
 
236
+ garm_list = os.listdir(os.path.join(example_path, "cloth"))
237
+ garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
238
 
239
+ human_list = os.listdir(os.path.join(example_path, "human"))
240
+ human_list_path = [os.path.join(example_path, "human", human) for human in human_list]
241
 
242
  human_ex_list = []
243
  for ex_human in human_list_path:
244
+ ex_dict = {}
245
  ex_dict['background'] = ex_human
246
  ex_dict['layers'] = None
247
  ex_dict['composite'] = None
248
  human_ex_list.append(ex_dict)
249
 
 
 
 
250
  image_blocks = gr.Blocks().queue()
251
+
252
  with image_blocks as demo:
253
+ gr.Markdown("## FashionFit πŸ‘š πŸ‘• πŸ‘– πŸ‘— πŸ‘” πŸ‘™ πŸ§₯")
254
+ gr.Markdown("Experience your style with AI-powered fashion fitting..")
255
+
256
  with gr.Row():
257
  with gr.Column():
258
  imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
259
  with gr.Row():
260
+ is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)", value=True)
261
  with gr.Row():
262
+ is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing", value=False)
 
263
  example = gr.Examples(
264
  inputs=imgs,
265
  examples_per_page=10,
 
274
  example = gr.Examples(
275
  inputs=garm_img,
276
  examples_per_page=8,
277
+ examples=garm_list_path
278
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279
 
280
+ with gr.Column():
281
+ # Only the following line is changed to hide the masked image element
282
+ masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False, visible=False)
283
 
284
+ with gr.Column():
285
+ image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
286
 
287
+ with gr.Column():
288
+ try_button = gr.Button(value="Try-on")
289
+ with gr.Accordion(label="Advanced Settings", open=False):
290
+ with gr.Row():
291
+ denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
292
+ seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
293
 
294
+ try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed], outputs=[image_out, masked_img], api_name='tryon')
295
 
296
+ image_blocks.launch()