ILYA_docs_RAG / RAGbot.py
TheDavidYoungblood
99 additions of files in the repo, 99 additions of files...
fb75b53
import yaml
import fitz
import torch
import gradio as gr
from PIL import Image
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import PyPDFLoader
from langchain.prompts import PromptTemplate
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import spaces
from langchain_text_splitters import RecursiveCharacterTextSplitter
from pymilvus import connections, Collection, FieldSchema, CollectionSchema, DataType
from datasets import Dataset, load_from_disk
import faiss
import numpy as np
from pastebin_api import get_protected_content
class RAGbot:
def __init__(self, config_path="config.yaml"):
self.processed = False
self.page = 0
self.chat_history = []
self.prompt = None
self.documents = None
self.embeddings = None
self.zilliz_vectordb = None
self.hf_vectordb = None
self.tokenizer = None
self.model = None
self.pipeline = None
self.chain = None
self.chunk_size = 512
self.overlap_percentage = 50
self.max_chunks_in_context = 2
self.current_context = None
self.model_temperatue = 0.5
self.format_seperator = "\n\n--\n\n"
self.pipe = None
with open(config_path, "r") as file:
config = yaml.safe_load(file)
self.model_embeddings = config["modelEmbeddings"]
self.auto_tokenizer = config["autoTokenizer"]
self.auto_model_for_causal_lm = config["autoModelForCausalLM"]
self.zilliz_config = config["zilliz"]
self.persona_paste_key = config["personaPasteKey"]
def connect_to_zilliz(self):
connections.connect(
host=self.zilliz_config["host"],
port=self.zilliz_config["port"],
user=self.zilliz_config["user"],
password=self.zilliz_config["password"],
secure=True
)
self.zilliz_vectordb = Collection(self.zilliz_config["collection"])
def load_embeddings(self):
self.embeddings = HuggingFaceEmbeddings(model_name=self.model_embeddings)
def load_hf_vectordb(self, dataset_path, index_path):
dataset = load_from_disk(dataset_path)
index = faiss.read_index(index_path)
self.hf_vectordb = (dataset, index)
@spaces.GPU
def load_tokenizer(self):
self.tokenizer = AutoTokenizer.from_pretrained(self.auto_tokenizer)
@spaces.GPU
def create_organic_pipeline(self):
self.pipe = pipeline(
"text-generation",
model=self.auto_model_for_causal_lm,
model_kwargs={"torch_dtype": torch.bfloat16},
device="cuda",
)
def get_organic_context(self, query, use_hf=False):
if use_hf:
dataset, index = self.hf_vectordb
D, I = index.search(np.array([self.embeddings.embed_query(query)]), self.max_chunks_in_context)
context = self.format_seperator.join([dataset[i] for i in I[0]])
else:
result = self.zilliz_vectordb.search(
data=[self.embeddings.embed_query(query)],
anns_field="embeddings",
param={"metric_type": "IP", "params": {"nprobe": 10}},
limit=self.max_chunks_in_context,
expr=None,
)
context = self.format_seperator.join([hit.entity.get('text') for hit in result[0]])
self.current_context = context
def load_persona_data(self):
persona_content = get_protected_content(self.persona_paste_key)
persona_data = yaml.safe_load(persona_content)
self.persona_text = persona_data["persona_text"]
@spaces.GPU
def create_organic_response(self, history, query, use_hf=False):
self.get_organic_context(query, use_hf=use_hf)
messages = [
{"role": "system", "content": f"Based on the given context, answer the user's question while maintaining the persona:\n{self.persona_text}\n\nContext:\n{self.current_context}"},
{"role": "user", "content": query},
]
prompt = self.pipe.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
temp = 0.1
outputs = self.pipe(
prompt,
max_new_tokens=1024,
do_sample=True,
temperature=temp,
top_p=0.9,
)
return outputs[0]["generated_text"][len(prompt):]
def process_file(self, file):
self.documents = PyPDFLoader(file.name).load()
self.load_embeddings()
self.connect_to_zilliz()
@spaces.GPU
def generate_response(self, history, query, file, chunk_size, chunk_overlap_percentage, model_temperature, max_chunks_in_context, use_hf_index=False, hf_dataset_path=None, hf_index_path=None):
self.chunk_size = chunk_size
self.overlap_percentage = chunk_overlap_percentage
self.model_temperatue = model_temperature
self.max_chunks_in_context = max_chunks_in_context
if not query:
raise gr.Error(message='Submit a question')
if use_hf_index:
if not hf_dataset_path or not hf_index_path:
raise gr.Error(message='Provide HuggingFace dataset and index paths')
self.load_hf_vectordb(hf_dataset_path, hf_index_path)
result = self.create_organic_response(history="", query=query, use_hf=True)
else:
if not file:
raise gr.Error(message='Upload a PDF')
if not self.processed:
self.process_file(file)
self.processed = True
result = self.create_organic_response(history="", query=query)
self.load_persona_data()
result = f"{self.persona_text}\n\n{result}"
for char in result:
history[-1][-1] += char
return history, ""
def render_file(self, file, chunk_size, chunk_overlap_percentage, model_temperature, max_chunks_in_context):
doc = fitz.open(file.name)
page = doc[self.page]
self.chunk_size = chunk_size
self.overlap_percentage = chunk_overlap_percentage
self.model_temperatue = model_temperature
self.max_chunks_in_context = max_chunks_in_context
pix = page.get_pixmap(matrix=fitz.Matrix(300 / 72, 300 / 72))
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
return image
def add_text(self, history, text):
if not text:
raise gr.Error('Enter text')
history.append((text, ''))
return history