from typing import Iterator import gradio as gr import torch from model import get_input_token_length, run DEFAULT_SYSTEM_PROMPT = """\ You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\ """ MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = 4000 DESCRIPTION = """ # llama-2-13b-chat.ggmlv3.q4_K_S """ LICENSE = """

--- [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta). """ if not torch.cuda.is_available(): DESCRIPTION += '\n

Running on CPU đŸĨļ This demo does not work on CPU.

' def clear_and_save_textbox(message: str) -> tuple[str, str]: return '', message def display_input(message: str, history: list[tuple[str, str]]) -> list[tuple[str, str]]: history.append((message, '')) return history def delete_prev_fn( history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]: try: message, _ = history.pop() except IndexError: message = '' return history, message or '' def generate( message: str, history_with_input: list[tuple[str, str]], system_prompt: str, max_new_tokens: int, temperature: float, top_p: float, top_k: int, ) -> Iterator[list[tuple[str, str]]]: if max_new_tokens > MAX_MAX_NEW_TOKENS: raise ValueError history = history_with_input[:-1] generator = run(message, history, system_prompt, max_new_tokens, temperature, top_p, top_k) try: first_response = next(generator) yield history + [(message, first_response)] except StopIteration: yield history + [(message, '')] for response in generator: yield history + [(message, response)] def process_example(message: str) -> tuple[str, list[tuple[str, str]]]: generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50) for x in generator: pass return '', x def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None: input_token_length = get_input_token_length(message, chat_history, system_prompt) if input_token_length > MAX_INPUT_TOKEN_LENGTH: raise gr.Error(f'The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.') with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value='Duplicate Space for private use', elem_id='duplicate-button') with gr.Group(): chatbot = gr.Chatbot(label='Chatbot') with gr.Row(): textbox = gr.Textbox( container=False, show_label=False, placeholder='Type a message...', scale=10, ) submit_button = gr.Button('Submit', variant='primary', scale=1, min_width=0) with gr.Row(): retry_button = gr.Button('🔄 Retry', variant='secondary') undo_button = gr.Button('↩ī¸ Undo', variant='secondary') clear_button = gr.Button('🗑ī¸ Clear', variant='secondary') saved_input = gr.State() with gr.Accordion(label='Advanced options', open=False): system_prompt = gr.Textbox(label='System prompt', value=DEFAULT_SYSTEM_PROMPT, lines=6) max_new_tokens = gr.Slider( label='Max new tokens', minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ) temperature = gr.Slider( label='Temperature', minimum=0.1, maximum=4.0, step=0.1, value=1.0, ) top_p = gr.Slider( label='Top-p (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.95, ) top_k = gr.Slider( label='Top-k', minimum=1, maximum=1000, step=1, value=50, ) gr.Examples( examples=[ 'When is the best time to visit Beijing, and do you have any suggestions for me?', 'Hello there! How are you doing?', 'Can you explain briefly to me what is the Python programming language?', ], inputs=textbox, outputs=[textbox, chatbot], fn=process_example, cache_examples=True, ) gr.Markdown(LICENSE) textbox.submit( fn=clear_and_save_textbox, inputs=textbox, outputs=[textbox, saved_input], api_name=False, queue=False, ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False, ).then( fn=check_input_token_length, inputs=[saved_input, chatbot, system_prompt], api_name=False, queue=False, ).success( fn=generate, inputs=[ saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k, ], outputs=chatbot, api_name=False, ) button_event_preprocess = submit_button.click( fn=clear_and_save_textbox, inputs=textbox, outputs=[textbox, saved_input], api_name="submit", # api_name=False, queue=False, ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False, ).then( fn=check_input_token_length, inputs=[saved_input, chatbot, system_prompt], api_name=False, queue=False, ).success( fn=generate, inputs=[ saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k, ], outputs=chatbot, api_name=False, ) retry_button.click( fn=delete_prev_fn, inputs=chatbot, outputs=[chatbot, saved_input], api_name=False, queue=False, ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False, ).then( fn=generate, inputs=[ saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k, ], outputs=chatbot, api_name=False, ) undo_button.click( fn=delete_prev_fn, inputs=chatbot, outputs=[chatbot, saved_input], api_name=False, queue=False, ).then( fn=lambda x: x, inputs=[saved_input], outputs=textbox, api_name=False, queue=False, ) clear_button.click( fn=lambda: ([], ''), outputs=[chatbot, saved_input], queue=False, api_name=False, ) demo.queue(max_size=20).launch()