Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -18,11 +18,13 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
18 |
base_model_id = "runwayml/stable-diffusion-v1-5"
|
19 |
model_id = "LuyangZ/FloorAI"
|
20 |
|
21 |
-
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=
|
|
|
22 |
controlnet.to(device)
|
23 |
torch.cuda.empty_cache()
|
24 |
|
25 |
-
pipeline = StableDiffusionControlNetPipeline.from_pretrained(base_model_id , controlnet=controlnet, torch_dtype=torch.float32)
|
|
|
26 |
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
|
27 |
|
28 |
pipeline = pipeline.to(device)
|
@@ -95,7 +97,7 @@ def floorplan_generation(outline, num_of_rooms):
|
|
95 |
validation_image = n_outline
|
96 |
|
97 |
image_lst = []
|
98 |
-
for i in range(
|
99 |
seed = randrange(500)
|
100 |
generator = torch.Generator(device=device).manual_seed(seed)
|
101 |
|
@@ -111,15 +113,19 @@ def floorplan_generation(outline, num_of_rooms):
|
|
111 |
image = clean_img(image, mask)
|
112 |
image_lst.append(image)
|
113 |
|
114 |
-
return image_lst[0], image_lst[1]
|
115 |
|
116 |
|
117 |
gradio_interface = gradio.Interface(
|
118 |
fn=floorplan_generation,
|
119 |
inputs=[gradio.Image(label="Floor Plan Outline, Entrance"),
|
120 |
gradio.Textbox(type="text", label="number of rooms", placeholder="number of rooms")],
|
121 |
-
outputs=[gradio.Image(label="Generated Floor Plan 1"),
|
122 |
-
|
|
|
|
|
|
|
|
|
123 |
|
124 |
|
125 |
gradio_interface.queue(max_size=10, status_update_rate="auto")
|
|
|
18 |
base_model_id = "runwayml/stable-diffusion-v1-5"
|
19 |
model_id = "LuyangZ/FloorAI"
|
20 |
|
21 |
+
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype="auto")
|
22 |
+
# controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float32)
|
23 |
controlnet.to(device)
|
24 |
torch.cuda.empty_cache()
|
25 |
|
26 |
+
# pipeline = StableDiffusionControlNetPipeline.from_pretrained(base_model_id , controlnet=controlnet, torch_dtype=torch.float32)
|
27 |
+
pipeline = StableDiffusionControlNetPipeline.from_pretrained(base_model_id , controlnet=controlnet, torch_dtype="auto")
|
28 |
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
|
29 |
|
30 |
pipeline = pipeline.to(device)
|
|
|
97 |
validation_image = n_outline
|
98 |
|
99 |
image_lst = []
|
100 |
+
for i in range(5):
|
101 |
seed = randrange(500)
|
102 |
generator = torch.Generator(device=device).manual_seed(seed)
|
103 |
|
|
|
113 |
image = clean_img(image, mask)
|
114 |
image_lst.append(image)
|
115 |
|
116 |
+
return image_lst[0], image_lst[1], image_lst[2], image_lst[3], image_lst[4]
|
117 |
|
118 |
|
119 |
gradio_interface = gradio.Interface(
|
120 |
fn=floorplan_generation,
|
121 |
inputs=[gradio.Image(label="Floor Plan Outline, Entrance"),
|
122 |
gradio.Textbox(type="text", label="number of rooms", placeholder="number of rooms")],
|
123 |
+
outputs=[gradio.Image(label="Generated Floor Plan 1"),
|
124 |
+
gradio.Image(label="Generated Floor Plan 2"),
|
125 |
+
gradio.Image(label="Generated Floor Plan 3"),
|
126 |
+
gradio.Image(label="Generated Floor Plan 4"),
|
127 |
+
gradio.Image(label="Generated Floor Plan 5")],
|
128 |
+
title="FloorAI")
|
129 |
|
130 |
|
131 |
gradio_interface.queue(max_size=10, status_update_rate="auto")
|