Spaces:
Running
on
T4
Running
on
T4
import torch | |
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN | |
from llava.conversation import conv_templates, SeparatorStyle | |
from llava.model.builder import load_pretrained_model | |
from llava.utils import disable_torch_init | |
from llava.mm_utils import tokenizer_image_token | |
from transformers.generation.streamers import TextIteratorStreamer | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
from cog import BasePredictor, Input, Path, ConcatenateIterator | |
import time | |
import subprocess | |
from threading import Thread | |
import os | |
os.environ["HUGGINGFACE_HUB_CACHE"] = os.getcwd() + "/weights" | |
# url for the weights mirror | |
REPLICATE_WEIGHTS_URL = "https://weights.replicate.delivery/default" | |
# files to download from the weights mirrors | |
weights = [ | |
{ | |
"dest": "liuhaotian/llava-v1.5-13b", | |
# git commit hash from huggingface | |
"src": "llava-v1.5-13b/006818fc465ebda4c003c0998674d9141d8d95f8", | |
"files": [ | |
"config.json", | |
"generation_config.json", | |
"pytorch_model-00001-of-00003.bin", | |
"pytorch_model-00002-of-00003.bin", | |
"pytorch_model-00003-of-00003.bin", | |
"pytorch_model.bin.index.json", | |
"special_tokens_map.json", | |
"tokenizer.model", | |
"tokenizer_config.json", | |
] | |
}, | |
{ | |
"dest": "openai/clip-vit-large-patch14-336", | |
"src": "clip-vit-large-patch14-336/ce19dc912ca5cd21c8a653c79e251e808ccabcd1", | |
"files": [ | |
"config.json", | |
"preprocessor_config.json", | |
"pytorch_model.bin" | |
], | |
} | |
] | |
def download_json(url: str, dest: Path): | |
res = requests.get(url, allow_redirects=True) | |
if res.status_code == 200 and res.content: | |
with dest.open("wb") as f: | |
f.write(res.content) | |
else: | |
print(f"Failed to download {url}. Status code: {res.status_code}") | |
def download_weights(baseurl: str, basedest: str, files: list[str]): | |
basedest = Path(basedest) | |
start = time.time() | |
print("downloading to: ", basedest) | |
basedest.mkdir(parents=True, exist_ok=True) | |
for f in files: | |
dest = basedest / f | |
url = os.path.join(REPLICATE_WEIGHTS_URL, baseurl, f) | |
if not dest.exists(): | |
print("downloading url: ", url) | |
if dest.suffix == ".json": | |
download_json(url, dest) | |
else: | |
subprocess.check_call(["pget", url, str(dest)], close_fds=False) | |
print("downloading took: ", time.time() - start) | |
class Predictor(BasePredictor): | |
def setup(self) -> None: | |
"""Load the model into memory to make running multiple predictions efficient""" | |
for weight in weights: | |
download_weights(weight["src"], weight["dest"], weight["files"]) | |
disable_torch_init() | |
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model("liuhaotian/llava-v1.5-13b", model_name="llava-v1.5-13b", model_base=None, load_8bit=False, load_4bit=False) | |
def predict( | |
self, | |
image: Path = Input(description="Input image"), | |
prompt: str = Input(description="Prompt to use for text generation"), | |
top_p: float = Input(description="When decoding text, samples from the top p percentage of most likely tokens; lower to ignore less likely tokens", ge=0.0, le=1.0, default=1.0), | |
temperature: float = Input(description="Adjusts randomness of outputs, greater than 1 is random and 0 is deterministic", default=0.2, ge=0.0), | |
max_tokens: int = Input(description="Maximum number of tokens to generate. A word is generally 2-3 tokens", default=1024, ge=0), | |
) -> ConcatenateIterator[str]: | |
"""Run a single prediction on the model""" | |
conv_mode = "llava_v1" | |
conv = conv_templates[conv_mode].copy() | |
image_data = load_image(str(image)) | |
image_tensor = self.image_processor.preprocess(image_data, return_tensors='pt')['pixel_values'].half().cuda() | |
# loop start | |
# just one turn, always prepend image token | |
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt | |
conv.append_message(conv.roles[0], inp) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() | |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
keywords = [stop_str] | |
streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, timeout=20.0) | |
with torch.inference_mode(): | |
thread = Thread(target=self.model.generate, kwargs=dict( | |
inputs=input_ids, | |
images=image_tensor, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_tokens, | |
streamer=streamer, | |
use_cache=True)) | |
thread.start() | |
# workaround: second-to-last token is always " " | |
# but we want to keep it if it's not the second-to-last token | |
prepend_space = False | |
for new_text in streamer: | |
if new_text == " ": | |
prepend_space = True | |
continue | |
if new_text.endswith(stop_str): | |
new_text = new_text[:-len(stop_str)].strip() | |
prepend_space = False | |
elif prepend_space: | |
new_text = " " + new_text | |
prepend_space = False | |
if len(new_text): | |
yield new_text | |
if prepend_space: | |
yield " " | |
thread.join() | |
def load_image(image_file): | |
if image_file.startswith('http') or image_file.startswith('https'): | |
response = requests.get(image_file) | |
image = Image.open(BytesIO(response.content)).convert('RGB') | |
else: | |
image = Image.open(image_file).convert('RGB') | |
return image | |