artst-demo-asr / app.py
herwoww's picture
Update app.py
6deef49
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Translate pre-processed data with a trained model.
"""
import ast
import logging
import argparse
import math
import os
import sys
from argparse import Namespace
from itertools import chain
import numpy as np
import torch
from omegaconf import DictConfig
from fairseq import checkpoint_utils, options, scoring, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.logging import progress_bar
from fairseq.logging.meters import StopwatchMeter, TimeMeter
import os
import torch
import gradio as gr
import numpy as np
import os.path as op
import pyarabic.araby as araby
import subprocess
import soundfile as sf
from artst.tasks.artst import ArTSTTask
from artst.models.artst import ArTSTTransformerModel
from fairseq.tasks.hubert_pretraining import LabelEncoder
from fairseq import checkpoint_utils, options, scoring, tasks, utils
from loguru import logger
from fairseq.logging.meters import StopwatchMeter, TimeMeter
def postprocess(wav, cur_sample_rate):
if wav.dim() == 2:
wav = wav.mean(-1)
assert wav.dim() == 1, wav.dim()
if cur_sample_rate != 16000:
raise Exception(f"sr {cur_sample_rate} != {16000}")
return wav
def main(cfg: DictConfig, audio_path):
print('config')
print(cfg)
if isinstance(cfg, Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
assert cfg.common_eval.path is not None, "--path required for generation!"
assert (
not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam
), "--sampling requires --nbest to be equal to --beam"
assert (
cfg.generation.replace_unk is None or cfg.dataset.dataset_impl == "raw"
), "--replace-unk requires a raw text dataset (--dataset-impl=raw)"
if cfg.common_eval.results_path is not None:
os.makedirs(cfg.common_eval.results_path, exist_ok=True)
output_path = os.path.join(
cfg.common_eval.results_path,
"generate-{}.txt".format(cfg.dataset.gen_subset),
)
with open(output_path, "w", buffering=1, encoding="utf-8") as h:
return _main(cfg, h)
else:
return _main(cfg, sys.stdout, audio_path)
def get_symbols_to_strip_from_output(generator):
if hasattr(generator, "symbols_to_strip_from_output"):
return generator.symbols_to_strip_from_output
else:
return {generator.eos}
def _main(cfg: DictConfig, output_file, audio_path):
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=output_file,
)
logger = logging.getLogger("fairseq_cli.generate")
utils.import_user_module(cfg.common)
if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
cfg.dataset.max_tokens = 12000
logger.info(cfg)
# Fix seed for stochastic decoding
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
use_cuda = torch.cuda.is_available() and not cfg.common.cpu
# Load dataset splits
task = tasks.setup_task(cfg.task)
# Set dictionaries
try:
src_dict = getattr(task, "source_dictionary", None)
except NotImplementedError:
src_dict = None
tgt_dict = task.target_dictionary
overrides = ast.literal_eval(cfg.common_eval.model_overrides)
# Load ensemble
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
models, saved_cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(cfg.common_eval.path),
arg_overrides=overrides,
task=task,
suffix=cfg.checkpoint.checkpoint_suffix,
strict=(cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=cfg.checkpoint.checkpoint_shard_count,
)
# loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
# task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)
if cfg.generation.lm_path is not None:
overrides["data"] = cfg.task.data
try:
lms, _ = checkpoint_utils.load_model_ensemble(
[cfg.generation.lm_path], arg_overrides=overrides, task=None
)
except:
logger.warning(
f"Failed to load language model! Please make sure that the language model dict is the same "
f"as target dict and is located in the data dir ({cfg.task.data})"
)
raise
assert len(lms) == 1
else:
lms = [None]
# Optimize ensemble for generation
for model in chain(models, lms):
if model is None:
continue
if cfg.common.fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
align_dict = utils.load_align_dict(cfg.generation.replace_unk)
# Initialize generator
gen_timer = StopwatchMeter()
extra_gen_cls_kwargs = {"lm_model": lms[0], "lm_weight": cfg.generation.lm_weight}
generator = task.build_generator(
models, cfg.generation, extra_gen_cls_kwargs=extra_gen_cls_kwargs
)
# Handle tokenization and BPE
tokenizer = task.build_tokenizer(cfg.tokenizer)
bpe = task.build_bpe(cfg.bpe)
def decode_fn(x):
if bpe is not None:
x = bpe.decode(x)
if tokenizer is not None:
x = tokenizer.decode(x)
return x
scorer = scoring.build_scorer(cfg.scoring, tgt_dict)
num_sentences = 0
has_target = True
wps_meter = TimeMeter()
wav, cur_sample_rate = sf.read(audio_path)
wav = torch.from_numpy(wav).float()
wav = postprocess(wav, cur_sample_rate)
sample = {'index': 0, 'net_input': {'source': torch.tensor(wav).unsqueeze(dim=0), 'padding_mask':
torch.BoolTensor(wav.shape).fill_(False).unsqueeze(dim=0)}, 'id': [0], 'target': [[None], ]}
prefix_tokens = None
if cfg.generation.prefix_size > 0:
prefix_tokens = sample["target"][:, : cfg.generation.prefix_size]
constraints = None
if "constraints" in sample:
constraints = sample["constraints"]
gen_timer.start()
hypos = task.inference_step(
generator,
models,
sample,
prefix_tokens=prefix_tokens,
constraints=constraints,
)
num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
gen_timer.stop(num_generated_tokens)
for i, sample_id in enumerate(sample["id"]):
has_target = False
# Remove padding
if "src_tokens" in sample["net_input"]:
src_tokens = utils.strip_pad(
sample["net_input"]["src_tokens"][i, :], tgt_dict.pad()
)
else:
src_tokens = None
target_tokens = None
if has_target:
target_tokens = (
utils.strip_pad(sample["target"][i, :], tgt_dict.pad()).int().cpu()
)
# Either retrieve the original sentences or regenerate them from tokens.
if align_dict is not None:
src_str = task.dataset(cfg.dataset.gen_subset).src.get_original_text(
sample_id
)
target_str = task.dataset(cfg.dataset.gen_subset).tgt.get_original_text(
sample_id
)
else:
if src_dict is not None:
src_str = src_dict.string(src_tokens, cfg.common_eval.post_process)
else:
src_str = ""
if has_target:
target_str = tgt_dict.string(
target_tokens,
cfg.common_eval.post_process,
escape_unk=True,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(
generator
),
)
src_str = decode_fn(src_str)
if has_target:
target_str = decode_fn(target_str)
if not cfg.common_eval.quiet:
if src_dict is not None:
print("S-{}\t{}".format(sample_id, src_str), file=output_file)
if has_target:
print("T-{}\t{}".format(sample_id, target_str), file=output_file)
# Process top predictions
for j, hypo in enumerate(hypos[i][: cfg.generation.nbest]):
hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
hypo_tokens=hypo["tokens"].int().cpu(),
src_str=src_str,
alignment=hypo["alignment"],
align_dict=align_dict,
tgt_dict=tgt_dict,
remove_bpe=cfg.common_eval.post_process,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
)
detok_hypo_str = decode_fn(hypo_str)
if not cfg.common_eval.quiet:
score = hypo["score"] / math.log(2) # convert to base 2
# original hypothesis (after tokenization and BPE)
print(
"H-{}\t{}\t{}".format(sample_id, score, hypo_str),
file=output_file,
)
# detokenized hypothesis
print(
"D-{}\t{}\t{}".format(sample_id, score, detok_hypo_str),
file=output_file,
)
print(
"P-{}\t{}".format(
sample_id,
" ".join(
map(
lambda x: "{:.4f}".format(x),
# convert from base e to base 2
hypo["positional_scores"]
.div_(math.log(2))
.tolist(),
)
),
),
file=output_file,
)
if cfg.generation.print_alignment == "hard":
print(
"A-{}\t{}".format(
sample_id,
" ".join(
[
"{}-{}".format(src_idx, tgt_idx)
for src_idx, tgt_idx in alignment
]
),
),
file=output_file,
)
if cfg.generation.print_alignment == "soft":
print(
"A-{}\t{}".format(
sample_id,
" ".join(
[",".join(src_probs) for src_probs in alignment]
),
),
file=output_file,
)
if cfg.generation.print_step:
print(
"I-{}\t{}".format(sample_id, hypo["steps"]),
file=output_file,
)
if cfg.generation.retain_iter_history:
for step, h in enumerate(hypo["history"]):
_, h_str, _ = utils.post_process_prediction(
hypo_tokens=h["tokens"].int().cpu(),
src_str=src_str,
alignment=None,
align_dict=None,
tgt_dict=tgt_dict,
remove_bpe=None,
)
print(
"E-{}_{}\t{}".format(sample_id, step, h_str),
file=output_file,
)
# Score only the top hypothesis
if has_target and j == 0:
if (
align_dict is not None
or cfg.common_eval.post_process is not None
):
# Convert back to tokens for evaluation with unk replacement and/or without BPE
target_tokens = tgt_dict.encode_line(
target_str, add_if_not_exist=True
)
hypo_tokens = tgt_dict.encode_line(
detok_hypo_str, add_if_not_exist=True
)
if hasattr(scorer, "add_string"):
scorer.add_string(target_str, detok_hypo_str)
else:
scorer.add(target_tokens, hypo_tokens)
wps_meter.update(num_generated_tokens)
# progress.log({"wps": round(wps_meter.avg)})
logger.info("NOTE: hypothesis and token scores are output in base 2")
if has_target:
if cfg.bpe and not cfg.generation.sacrebleu:
if cfg.common_eval.post_process:
logger.warning(
"BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization"
)
else:
logger.warning(
"If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words. Use --sacrebleu for standard 13a BLEU tokenization"
)
# use print to be consistent with other main outputs: S-, H-, T-, D- and so on
print(
"Generate {} with beam={}: {}".format(
cfg.dataset.gen_subset, cfg.generation.beam, scorer.result_string()
),
file=output_file,
)
return detok_hypo_str
def inference(audio_path):
# parser = options.get_generation_parser()
# TODO: replace this workaround with refactoring of `AudioPretraining`
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument(
"--arch",
"-a",
metavar="ARCH",
default="wav2vec2",
help="Model architecture. For constructing tasks that rely on "
"model args (e.g. `AudioPretraining`)",
)
parser.add_argument('--data', type=str, default='./utils', metavar='data')
parser.add_argument('--bpe-tokenizer', type=str, default='./utils/arabic.model')
parser.add_argument('--user-dir', type=str, default='./SpeechT5/SpeechT5/speecht5/')
parser.add_argument('--task', type=str, default='artst')
parser.add_argument('--t5-task', type=str, default='s2t')
parser.add_argument('--path', type=str, default='./ckpts/mgb2_asr.pt')
parser.add_argument('--ctc-weight', type=float, default=0.25)
parser.add_argument('--max-tokens', type=int, default=350000)
parser.add_argument('--beam', type=int, default=5)
parser.add_argument('--scoring', type=str, default='wer')
parser.add_argument('--max-len-a', type=float, default=0)
parser.add_argument('--max-len-b', type=int, default=1000)
parser.add_argument('--sample-rate', type=int, default=16000)
parser.add_argument('--batch-size', type=int, default=1)
# parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--seed', type=int, default=4)
parser.add_argument('--normalize', type=bool, default=True)
args = parser.parse_args()
return main(args, audio_path=audio_path)
text_box = gr.Textbox(label="Arabic Text")
input_audio = gr.Audio(label="Upload Audio", type="filepath", sources="upload")
title="ArTST: Arabic Speech Recognition"
description="ArTST: Arabic text and speech transformer based on the T5 transformer. This space demonstarates the ASR checkpoint finetuned on \
the MGB-2 dataset. The model is pre-trained on the MGB-2 dataset."
examples=["samples/sample_audio.wav"]
article = """
<div style='margin:20px auto;'>
<p>References: <a href="https://arxiv.org/abs/2310.16621">ArTST paper</a> |
<a href="https://github.com/mbzuai-nlp/ArTST">GitHub</a> |
<a href="https://huggingface.co/MBZUAI/ArTST">Weights and Tokenizer</a></p>
<pre>
@inproceedings{toyin-etal-2023-artst,
title = "{A}r{TST}: {A}rabic Text and Speech Transformer",
author = "Toyin, Hawau and
Djanibekov, Amirbek and
Kulkarni, Ajinkya and
Aldarmaki, Hanan",
editor = "Sawaf, Hassan and
El-Beltagy, Samhaa and
Zaghouani, Wajdi and
Magdy, Walid and
Abdelali, Ahmed and
Tomeh, Nadi and
Abu Farha, Ibrahim and
Habash, Nizar and
Khalifa, Salam and
Keleg, Amr and
Haddad, Hatem and
Zitouni, Imed and
Mrini, Khalil and
Almatham, Rawan",
booktitle = "Proceedings of ArabicNLP 2023",
month = dec,
year = "2023",
address = "Singapore (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.arabicnlp-1.5",
pages = "41--51"
}
</pre>
<p>Speaker embeddings were generated from <a href="http://www.festvox.org/cmu_arctic/">CMU ARCTIC</a>.</p>
<p>ArTST is based on <a href="https://arxiv.org/abs/2110.07205">SpeechT5 architecture</a>.</p>
</div>
"""
demo = gr.Interface(inference, \
inputs=input_audio, outputs=text_box, title=title, description=description, examples=examples, article=article)
if __name__ == "__main__":
demo.launch(share=True)