Spaces:
Running
Running
File size: 10,289 Bytes
b0e6781 166575b 101c142 166575b 4c1d731 166575b 4c1d731 166575b 4c1d731 166575b b0e6781 4c1d731 b0e6781 4c1d731 b0e6781 d1b4d96 4c1d731 b0e6781 4c1d731 b0e6781 4c1d731 b0e6781 101c142 b0e6781 4c1d731 b0e6781 101c142 b0e6781 4c1d731 b0e6781 101c142 b0e6781 f3cadf1 b0e6781 101c142 b0e6781 4c1d731 b0e6781 101c142 166575b b0e6781 166575b b0e6781 166575b b0e6781 4c1d731 b0e6781 101c142 b0e6781 4c1d731 b0e6781 101c142 b0e6781 4c1d731 b0e6781 4c1d731 b0e6781 4c1d731 b0e6781 166575b b0e6781 4c1d731 b0e6781 4c1d731 b0e6781 101c142 b0e6781 4c1d731 b0e6781 101c142 4c1d731 b0e6781 4c1d731 b0e6781 101c142 b0e6781 101c142 b0e6781 4c1d731 b0e6781 101c142 4c1d731 b0e6781 4c1d731 b0e6781 4c1d731 b0e6781 101c142 166575b b0e6781 166575b b0e6781 4c1d731 101c142 b0e6781 101c142 b0e6781 101c142 b0e6781 4c1d731 b0e6781 101c142 4c1d731 b0e6781 4c1d731 101c142 b0e6781 101c142 b0e6781 4c1d731 b0e6781 101c142 c751340 b0e6781 4c1d731 b0e6781 4c1d731 b0e6781 166575b b0e6781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import streamlit as st
from app.draw_diagram import *
from app.content import *
from app.summarization import *
def dataset_contents(dataset, metrics):
custom_css = """
<style>
.my-dataset-info {
# background-color: #F9EBEA;
# padding: 10px;
color: #050505;
font-style: normal;
font-size: 8px;
height: auto;
}
</style>
"""
st.markdown(custom_css, unsafe_allow_html=True)
st.markdown(f"""<div class="my-dataset-info">
<p><b>About this dataset</b>: {dataset}</p>
</div>""", unsafe_allow_html=True)
st.markdown(f"""<div class="my-dataset-info">
<p><b>About this metric</b>: {metrics}</p>
</div>""", unsafe_allow_html=True)
def dashboard():
with st.container():
st.title("AudioBench")
st.markdown("""
[gh]: https://github.com/AudioLLMs/AudioBench
[![GitHub watchers](https://img.shields.io/github/watchers/AudioLLMs/AudioBench?style=social)][gh]
[![GitHub Repo stars](https://img.shields.io/github/stars/AudioLLMs/AudioBench?style=social)][gh]
""")
audio_url = "https://arxiv.org/abs/2406.16020"
st.markdown("#### News")
st.markdown("Dec, 2024: Update layout and support comparison between models with similar model sizes.")
st.divider()
st.markdown("#### What is [AudioBench](%s)?" % audio_url)
st.markdown("##### :dizzy: A comprehensive evaluation benchmark designed for general instruction-following audiolanguage models.")
st.markdown("##### :dizzy: A evaluation benchmark that we consistently put effort in updating and maintaining.")
st.markdown('''
''')
with st.container():
left_co, center_co, right_co = st.columns([0.5,1, 0.5])
with center_co:
st.image("./style/audio_overview.png",
caption="Overview of the datasets in AudioBench.",
# use_container_width = True
)
st.markdown('''
''')
st.markdown("###### :dart: Our Benchmark includes: ")
cols = st.columns(10)
cols[1].metric(label="Tasks", value=">8") #delta="Tasks", delta_color="off"
cols[2].metric(label="Datasets", value=">30")
cols[3].metric(label="Evaluated Models", value=">5")
st.divider()
with st.container():
st.markdown("##### Citations")
st.markdown('''
:round_pushpin: AudioBench Paper \n
@article{wang2024audiobench,
title={AudioBench: A Universal Benchmark for Audio Large Language Models},
author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F},
journal={arXiv preprint arXiv:2406.16020},
year={2024}
}
''')
def asr():
st.title("Task: Automatic Speech Recognition")
sum = ['Summarization']
dataset_lists = ['LibriSpeech-Test-Clean',
'LibriSpeech-Test-Other',
'Common-Voice-15-En-Test',
'Peoples-Speech-Test',
'GigaSpeech-Test',
'Earnings21-Test',
'Earnings22-Test',
'Tedlium3-Test',
'Tedlium3-Long-form-Test',
#'IMDA-Part1-ASR-Test',
#'IMDA-Part2-ASR-Test'
]
filters_levelone = sum + dataset_lists
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('ASR', ['wer'])
else:
dataset_contents(asr_datsets[filter_1], metrics['wer'])
draw('su', 'ASR', filter_1, 'wer', cus_sort=True)
def sqa():
st.title("Task: Speech Question Answering")
sum = ['Summarization']
binary = ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']
rest = ['SLUE-P2-SQA5-Test',
'Public-SG-Speech-QA-Test',
'Spoken-Squad-Test']
filters_levelone = sum + binary + rest
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('SQA', ['llama3_70b_judge_binary', 'llama3_70b_judge'])
elif filter_1 in binary:
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge_binary'])
draw('su', 'SQA', filter_1, 'llama3_70b_judge_binary')
else:
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
draw('su', 'SQA', filter_1, 'llama3_70b_judge')
def si():
st.title("Task: Speech Instruction")
sum = ['Summarization']
dataset_lists = ['OpenHermes-Audio-Test',
'ALPACA-Audio-Test']
filters_levelone = sum + dataset_lists
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('SI', ['llama3_70b_judge'])
else:
dataset_contents(si_datasets[filter_1], metrics['llama3_70b_judge'])
draw('su', 'SI', filter_1, 'llama3_70b_judge')
def ac():
st.title("Task: Audio Captioning")
filters_levelone = ['WavCaps-Test',
'AudioCaps-Test']
filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
with middle:
metric = st.selectbox('Metric', filters_leveltwo)
if filter_1 or metric:
dataset_contents(ac_datasets[filter_1], metrics[metric.lower().replace('-', '_')])
draw('asu', 'AC',filter_1, metric.lower().replace('-', '_'))
def asqa():
st.title("Task: Audio Scene Question Answering")
sum = ['Summarization']
dataset_lists = ['Clotho-AQA-Test',
'WavCaps-QA-Test',
'AudioCaps-QA-Test']
filters_levelone = sum + dataset_lists
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('AQA', ['llama3_70b_judge'])
else:
dataset_contents(asqa_datasets[filter_1], metrics['llama3_70b_judge'])
draw('asu', 'AQA',filter_1, 'llama3_70b_judge')
def er():
st.title("Task: Emotion Recognition")
sum = ['Summarization']
dataset_lists = ['IEMOCAP-Emotion-Test',
'MELD-Sentiment-Test',
'MELD-Emotion-Test']
filters_levelone = sum + dataset_lists
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('ER', ['llama3_70b_judge_binary'])
else:
dataset_contents(er_datasets[filter_1], metrics['llama3_70b_judge_binary'])
draw('vu', 'ER', filter_1, 'llama3_70b_judge_binary')
def ar():
st.title("Task: Accent Recognition")
filters_levelone = ['VoxCeleb-Accent-Test']
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
# if filter_1 in sum:
# sum_table('aR', 'llama3_70b_judge')
# else:
dataset_contents(ar_datsets[filter_1], metrics['llama3_70b_judge'])
draw('vu', 'AR', filter_1, 'llama3_70b_judge')
def gr():
st.title("Task: Gender Recognition")
sum = ['Summarization']
dataset_lists = ['VoxCeleb-Gender-Test',
'IEMOCAP-Gender-Test']
filters_levelone = sum + dataset_lists
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('GR', ['llama3_70b_judge_binary'])
else:
dataset_contents(gr_datasets[filter_1], metrics['llama3_70b_judge_binary'])
draw('vu', 'GR', filter_1, 'llama3_70b_judge_binary')
def spt():
st.title("Task: Speech Translation")
sum = ['Summarization']
dataset_lists = ['Covost2-EN-ID-test',
'Covost2-EN-ZH-test',
'Covost2-EN-TA-test',
'Covost2-ID-EN-test',
'Covost2-ZH-EN-test',
'Covost2-TA-EN-test']
filters_levelone = sum + dataset_lists
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('ST', ['bleu'])
else:
dataset_contents(spt_datasets[filter_1], metrics['bleu'])
draw('su', 'ST', filter_1, 'bleu')
def cnasr():
st.title("Task: Automatic Speech Recognition (Chinese)")
filters_levelone = ['Aishell-ASR-ZH-Test']
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
dataset_contents(cnasr_datasets[filter_1], metrics['wer'])
draw('su', 'CNASR', filter_1, 'wer')
|