File size: 1,846 Bytes
2f6394e
 
 
 
 
 
 
 
 
 
4410667
 
2f6394e
 
 
4410667
2f6394e
 
 
4410667
2f6394e
 
 
4410667
2f6394e
 
 
4410667
2f6394e
 
4410667
 
2f6394e
 
4410667
 
 
 
 
 
 
2f6394e
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import pandas as pd

# Define the data
data = {
    "Original Name"      : [],
    "Proper Display Name": [],
    "Link"               : [],
}

# Add model information to the
data['Original Name'].append('SALMONN_7B')
data['Proper Display Name'].append('Fusion: SALMONN-7B')
data['Link'].append('https://arxiv.org/html/2310.13289v2')

data['Original Name'].append('wavllm_fairseq')
data['Proper Display Name'].append('Fusion: WavLLM')
data['Link'].append('https://arxiv.org/abs/2404.00656')

data['Original Name'].append('Qwen2-Audio-7B-Instruct')
data['Proper Display Name'].append('Fusion: Qwen2-Audio-7B-Instruct')
data['Link'].append('https://arxiv.org/abs/2407.10759')

data['Original Name'].append('whisper_large_v3_with_llama_3_8b_instruct')
data['Proper Display Name'].append('Cascade: Whisper-Large-v3 / Llama-3-8B-Instruct')
data['Link'].append('https://arxiv.org/abs/2406.16020')

data['Original Name'].append('mowe_audio')
data['Proper Display Name'].append('Fusion: MOWE-Audio')
data['Link'].append('https://arxiv.org/abs/2409.06635')

data['Original Name'].append('Qwen-Audio-Chat')
data['Proper Display Name'].append('Fusion: Qwen-Audio-Chat')
data['Link'].append('https://arxiv.org/abs/2311.07919')

data['Original Name'].append('MERaLiON_AudioLLM_v1')
data['Proper Display Name'].append('Fusion: MERaLiON-AudioLLM-Whisper-SEA-LION')
data['Link'].append('https://huggingface.co/MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION')

data['Original Name'].append('cascade_whisper_large_v2_gemma2_9b_cpt_sea_lionv3_instruct')
data['Proper Display Name'].append('Cascade: Whisper-Large-v2 / SEA-LIONv3')
data['Link'].append('https://github.com/aisingapore/sealion')





def get_dataframe():
    """
    Returns a DataFrame with the data and drops rows with missing values.
    """
    df = pd.DataFrame(data)
    return df.dropna(axis=0)