Spaces:
Running
Running
File size: 18,445 Bytes
b0e6781 166575b 101c142 166575b 4c1d731 166575b 4c1d731 166575b 4c1d731 166575b b0e6781 62dd38d b0e6781 62dd38d b0e6781 1b96158 62dd38d 372c18e 4c1d731 b0e6781 4c1d731 094ad79 62dd38d 094ad79 62dd38d 094ad79 b0e6781 62dd38d 094ad79 62dd38d b0e6781 f7d283c b0e6781 094ad79 b0e6781 094ad79 f7d283c 094ad79 b0e6781 62dd38d f7d283c 62dd38d b0e6781 1d32376 f7d283c 101c142 b0e6781 62dd38d b0e6781 4c1d731 b0e6781 101c142 62dd38d 101c142 f7d283c 62dd38d b0e6781 1d32376 62dd38d 5792938 f7d283c 5792938 62dd38d 5792938 62dd38d 5792938 f7d283c 62dd38d 5792938 62dd38d 1d32376 f7d283c 1d32376 62dd38d 1d32376 62dd38d 1d32376 f7d283c 62dd38d 1d32376 b0e6781 62dd38d b0e6781 1d32376 62dd38d f7d283c 62dd38d f7d283c 62dd38d 101c142 b0e6781 62dd38d b0e6781 62dd38d f7d283c 62dd38d b0e6781 4c1d731 b0e6781 101c142 62dd38d f7d283c 62dd38d 101c142 62dd38d 166575b b0e6781 f7d283c 62dd38d f7d283c b0e6781 62dd38d 4c1d731 b0e6781 1d32376 101c142 f7d283c 62dd38d 101c142 b0e6781 62dd38d b0e6781 4c1d731 b0e6781 101c142 62dd38d 101c142 f7d283c 62dd38d b0e6781 62dd38d 4c1d731 b0e6781 f7d283c 62dd38d b0e6781 62dd38d b0e6781 4c1d731 b0e6781 4c1d731 b0e6781 f7d283c 62dd38d 4c1d731 b0e6781 62dd38d 4c1d731 b0e6781 1d32376 101c142 f7d283c 101c142 b0e6781 62dd38d b0e6781 4c1d731 b0e6781 101c142 62dd38d 101c142 f7d283c 62dd38d 4c1d731 b0e6781 62dd38d 4c1d731 b0e6781 1d32376 101c142 62dd38d f7d283c 62dd38d 101c142 b0e6781 62dd38d b0e6781 4c1d731 b0e6781 101c142 62dd38d 101c142 f7d283c 62dd38d 4c1d731 b0e6781 62dd38d 4c1d731 b0e6781 1d32376 f7d283c 1d32376 b0e6781 62dd38d b0e6781 4c1d731 b0e6781 1d32376 62dd38d 1d32376 f7d283c 62dd38d 166575b b0e6781 62dd38d 4c1d731 1d32376 b0e6781 f7d283c 101c142 b0e6781 62dd38d b0e6781 4c1d731 b0e6781 101c142 62dd38d 101c142 f7d283c 62dd38d 4c1d731 b0e6781 c751340 fa6ba7b 62dd38d fa6ba7b f7d283c fa6ba7b 62dd38d fa6ba7b 62dd38d fa6ba7b f7d283c 62dd38d fa6ba7b f7d283c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
import streamlit as st
from app.draw_diagram import *
from app.content import *
from app.summarization import *
def dataset_contents(dataset, metrics):
custom_css = """
<style>
.my-dataset-info {
# background-color: #F9EBEA;
# padding: 10px;
color: #050505;
font-style: normal;
font-size: 8px;
height: auto;
}
</style>
"""
st.markdown(custom_css, unsafe_allow_html=True)
st.markdown(f"""<div class="my-dataset-info">
<p><b>About this dataset</b>: {dataset}</p>
</div>""", unsafe_allow_html=True)
st.markdown(f"""<div class="my-dataset-info">
<p><b>About this metric</b>: {metrics}</p>
</div>""", unsafe_allow_html=True)
def dashboard():
with st.container():
st.title("Leaderboard for AudioBench")
st.markdown("""
[gh1]: https://github.com/AudioLLMs/AudioBench
[gh2]: https://github.com/AudioLLMs/AudioBench
**Toolkit:** [![GitHub Repo stars](https://img.shields.io/github/stars/AudioLLMs/AudioBench?style=social)][gh1] |
[**Research Paper**](https://arxiv.org/abs/2406.16020) |
**Resource for AudioLLMs:** [![GitHub Repo stars](https://img.shields.io/github/stars/AudioLLMs/Awesome-Audio-LLM?style=social)][gh2]
""")
st.markdown("""
#### Recent updates
- **Jan. 2025**: Update the layout.
- **Dec. 2024**: Added MuChoMusic dataset for Music Understanding - MCQ Questions. From Paper: https://arxiv.org/abs/2408.01337.
- **Dec. 2024**: Singlish ASR task added! The datasets are available on [HF](https://huggingface.co/datasets/MERaLiON/MNSC).
- **Dec. 2024**: Updated layout and added support for comparison between models with similar sizes. 1) Reorganized layout for a better user experience. 2) Added performance summary for each task.
- **Aug. 2024**: Initial leaderboard is now online.
""")
st.divider()
st.markdown("""
#### Evaluating Audio-based Large Language Models
- AudioBench is a comprehensive evaluation benchmark designed for general instruction-following audio large language models.
- AudioBench is an evaluation benchmark that we continually improve and maintain.
Below are the initial 26 datasets that are included in AudioBench. We are now exteneded to over 40 datasets and going to extend to more in the future.
"""
)
with st.container():
st.markdown('''
''')
st.markdown("###### :dart: Our Benchmark includes: ")
cols = st.columns(8)
cols[0].metric(label="Tasks", value=">8")
cols[1].metric(label="Datasets", value=">40")
cols[2].metric(label="Evaluated Models", value=">5")
st.divider()
with st.container():
left_co, right_co = st.columns([1, 0.1])
with left_co:
st.markdown("""
##### Citations :round_pushpin:
```
@article{wang2024audiobench,
title={AudioBench: A Universal Benchmark for Audio Large Language Models},
author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F},
journal={arXiv preprint arXiv:2406.16020},
year={2024}
}
```
```
@article{wang2025advancing,
title={Advancing Singlish Understanding: Bridging the Gap with Datasets and Multimodal Models},
author={Wang, Bin and Zou, Xunlong and Sun, Shuo and Zhang, Wenyu and He, Yingxu and Liu, Zhuohan and Wei, Chengwei and Chen, Nancy F and Aw, AiTi},
journal={arXiv preprint arXiv:2501.01034},
year={2025}
}
```
```
@article{he2024meralion,
title={MERaLiON-AudioLLM: Technical Report},
author={He, Yingxu and Liu, Zhuohan and Sun, Shuo and Wang, Bin and Zhang, Wenyu and Zou, Xunlong and Chen, Nancy F and Aw, Ai Ti},
journal={arXiv preprint arXiv:2412.09818},
year={2024}
}
```
```
@article{zhang2024mowe,
title={MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders},
author={Zhang, Wenyu and Sun, Shuo and Wang, Bin and Zou, Xunlong and Liu, Zhuohan and He, Yingxu and Lin, Geyu and Chen, Nancy F and Aw, Ai Ti},
journal={ICASSP},
year={2025}
}
```
""")
def asr_english():
st.title("Task: Automatic Speech Recognition - English")
sum = ['Overall']
dataset_lists = [
'LibriSpeech-Clean',
'LibriSpeech-Other',
'CommonVoice-15-EN',
'Peoples-Speech',
'GigaSpeech-1',
'Earnings-21',
'Earnings-22',
'TED-LIUM-3',
'TED-LIUM-3-LongForm',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('asr_english', ['wer'])
else:
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['wer'])
draw('su', 'asr_english', filter_1, 'wer', cus_sort=True)
def asr_singlish():
st.title("Task: Automatic Speech Recognition - Singlish")
sum = ['Overall']
dataset_lists = [
'MNSC-PART1-ASR',
'MNSC-PART2-ASR',
'MNSC-PART3-ASR',
'MNSC-PART4-ASR',
'MNSC-PART5-ASR',
'MNSC-PART6-ASR',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('asr_singlish', ['wer'])
else:
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['wer'])
draw('su', 'asr_singlish', filter_1, 'wer')
def asr_mandarin():
st.title("Task: Automatic Speech Recognition - Mandarin")
sum = ['Overall']
dataset_lists = [
'AISHELL-ASR-ZH',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('asr_mandarin', ['wer'])
else:
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['wer'])
draw('su', 'asr_mandarin', filter_1, 'wer')
def speech_translation():
st.title("Task: Speech Translation")
sum = ['Overall']
dataset_lists = [
'CoVoST2-EN-ID',
'CoVoST2-EN-ZH',
'CoVoST2-EN-TA',
'CoVoST2-ID-EN',
'CoVoST2-ZH-EN',
'CoVoST2-TA-EN']
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('st', ['bleu'])
else:
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['bleu'])
draw('su', 'ST', filter_1, 'bleu')
def speech_question_answering_english():
st.title("Task: Spoken Question Answering - English")
sum = ['Overall']
dataset_lists = [
'CN-College-Listen-MCQ',
'DREAM-TTS-MCQ',
'SLUE-P2-SQA5',
'Public-SG-Speech-QA',
'Spoken-SQuAD',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('sqa_english', ['llama3_70b_judge'])
#elif filter_1 in dataset_lists:
# dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
# draw('su', 'SQA', filter_1, 'llama3_70b_judge')
else:
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
draw('su', 'sqa_english', filter_1, 'llama3_70b_judge')
def speech_question_answering_singlish():
st.title("Task: Spoken Question Answering - Singlish")
sum = ['Overall']
dataset_lists = [
'MNSC-PART3-SQA',
'MNSC-PART4-SQA',
'MNSC-PART5-SQA',
'MNSC-PART6-SQA',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('sqa_singlish', ['llama3_70b_judge'])
else:
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
draw('su', 'sqa_singlish', filter_1, 'llama3_70b_judge')
def spoken_dialogue_summarization_singlish():
st.title("Task: Spoken Dialogue Summarization - Singlish")
sum = ['Overall']
dataset_lists = [
'MNSC-PART3-SDS',
'MNSC-PART4-SDS',
'MNSC-PART5-SDS',
'MNSC-PART6-SDS',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('sds_singlish', ['llama3_70b_judge'])
else:
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
draw('su', 'sds_singlish', filter_1, 'llama3_70b_judge')
def speech_instruction():
st.title("Task: Speech Instruction")
sum = ['Overall']
dataset_lists = ['OpenHermes-Audio',
'ALPACA-Audio',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('speech_instruction', ['llama3_70b_judge'])
else:
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
draw('su', 'speech_instruction', filter_1, 'llama3_70b_judge')
def audio_captioning():
st.title("Task: Audio Captioning")
filters_levelone = ['WavCaps',
'AudioCaps',
]
filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
with middle:
metric = st.selectbox('Metric', filters_leveltwo)
if filter_1 or metric:
dataset_contents(dataset_diaplay_information[filter_1], metrics_info[metric.lower().replace('-', '_')])
draw('asu', 'audio_captioning', filter_1, metric.lower().replace('-', '_'))
def audio_scene_question_answering():
st.title("Task: Audio Scene Question Answering")
sum = ['Overall']
dataset_lists = ['Clotho-AQA',
'WavCaps-QA',
'AudioCaps-QA']
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('audio_scene_question_answering', ['llama3_70b_judge'])
else:
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
draw('asu', 'audio_scene_question_answering', filter_1, 'llama3_70b_judge')
def emotion_recognition():
st.title("Task: Emotion Recognition")
sum = ['Overall']
dataset_lists = [
'IEMOCAP-Emotion',
'MELD-Sentiment',
'MELD-Emotion',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('emotion_recognition', ['llama3_70b_judge'])
else:
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
draw('vu', 'emotion_recognition', filter_1, 'llama3_70b_judge')
def accent_recognition():
st.title("Task: Accent Recognition")
sum = ['Overall']
dataset_lists = [
'VoxCeleb-Accent',
'MNSC-AR-Sentence',
'MNSC-AR-Dialogue',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('accent_recognition', ['llama3_70b_judge'])
else:
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
draw('vu', 'accent_recognition', filter_1, 'llama3_70b_judge')
def gender_recognition():
st.title("Task: Gender Recognition")
sum = ['Overall']
dataset_lists = [
'VoxCeleb-Gender',
'IEMOCAP-Gender'
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('gender_recognition', ['llama3_70b_judge'])
else:
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
draw('vu', 'gender_recognition', filter_1, 'llama3_70b_judge')
def music_understanding():
st.title("Task: Music Understanding - MCQ Questions")
sum = ['Overall']
dataset_lists = ['MuChoMusic',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('music_understanding', ['llama3_70b_judge'])
else:
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
draw('vu', 'music_understanding', filter_1, 'llama3_70b_judge')
def under_development():
st.title("Task: Under Development")
dataset_lists = [
'CNA',
'IDPC',
'Parliament',
'UKUS-News',
'Mediacorp',
'IDPC-Short',
'Parliament-Short',
'UKUS-News-Short',
'Mediacorp-Short',
'YTB-ASR-Batch1',
'YTB-ASR-Batch2',
'SEAME-Dev-Man',
'SEAME-Dev-Sge',
'YTB-SQA-Batch1',
'YTB-SDS-Batch1',
'YTB-PQA-Batch1',
]
filters_levelone = dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
dataset_contents(dataset_diaplay_information[filter_1], 'under_development')
if filter_1 in [
'CNA',
'IDPC',
'Parliament',
'UKUS-News',
'Mediacorp',
'IDPC-Short',
'Parliament-Short',
'UKUS-News-Short',
'Mediacorp-Short',
'YTB-ASR-Batch1',
'YTB-ASR-Batch2',
'SEAME-Dev-Man',
'SEAME-Dev-Sge',
]:
draw('vu', 'under_development_wer', filter_1, 'wer')
elif filter_1 in [
'YTB-SQA-Batch1',
'YTB-SDS-Batch1',
'YTB-PQA-Batch1',
]:
draw('vu', 'under_development_llama3_70b_judge', filter_1, 'llama3_70b_judge')
|