File size: 18,445 Bytes
b0e6781
 
166575b
101c142
166575b
 
 
 
 
 
 
 
4c1d731
 
166575b
 
 
 
 
 
 
4c1d731
166575b
 
4c1d731
166575b
 
b0e6781
 
 
 
62dd38d
b0e6781
 
62dd38d
 
 
 
 
b0e6781
 
 
1b96158
62dd38d
 
 
 
 
 
372c18e
4c1d731
b0e6781
4c1d731
094ad79
62dd38d
094ad79
 
62dd38d
094ad79
 
 
 
 
b0e6781
 
 
 
 
 
 
62dd38d
094ad79
 
 
62dd38d
b0e6781
 
f7d283c
b0e6781
094ad79
 
 
 
b0e6781
 
 
 
 
 
094ad79
f7d283c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
094ad79
 
b0e6781
62dd38d
 
f7d283c
 
 
62dd38d
 
b0e6781
1d32376
 
f7d283c
 
 
 
 
 
 
 
 
101c142
 
 
b0e6781
62dd38d
b0e6781
 
4c1d731
b0e6781
 
101c142
62dd38d
101c142
f7d283c
62dd38d
 
b0e6781
1d32376
62dd38d
 
 
5792938
 
 
 
f7d283c
 
 
 
 
 
5792938
 
 
 
62dd38d
5792938
 
 
 
 
 
62dd38d
5792938
f7d283c
62dd38d
 
5792938
 
62dd38d
 
1d32376
 
 
 
f7d283c
1d32376
 
 
 
62dd38d
1d32376
 
 
 
 
 
62dd38d
1d32376
f7d283c
62dd38d
1d32376
b0e6781
 
62dd38d
 
 
b0e6781
1d32376
62dd38d
f7d283c
 
 
 
 
 
62dd38d
 
 
 
 
 
 
 
 
 
 
 
f7d283c
62dd38d
101c142
b0e6781
 
62dd38d
 
 
b0e6781
62dd38d
 
 
f7d283c
 
 
 
 
62dd38d
 
 
 
 
b0e6781
 
4c1d731
b0e6781
 
101c142
62dd38d
 
 
 
 
 
 
f7d283c
62dd38d
 
 
 
101c142
62dd38d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166575b
b0e6781
f7d283c
62dd38d
 
 
f7d283c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e6781
62dd38d
 
4c1d731
b0e6781
1d32376
101c142
f7d283c
 
62dd38d
101c142
 
b0e6781
62dd38d
b0e6781
 
4c1d731
b0e6781
 
101c142
62dd38d
101c142
f7d283c
62dd38d
 
 
b0e6781
62dd38d
 
4c1d731
b0e6781
f7d283c
 
62dd38d
b0e6781
 
62dd38d
b0e6781
 
4c1d731
b0e6781
4c1d731
b0e6781
 
f7d283c
62dd38d
 
 
4c1d731
b0e6781
62dd38d
4c1d731
b0e6781
1d32376
101c142
f7d283c
 
 
101c142
 
b0e6781
62dd38d
b0e6781
 
4c1d731
b0e6781
 
101c142
62dd38d
101c142
f7d283c
62dd38d
 
 
4c1d731
b0e6781
62dd38d
4c1d731
b0e6781
1d32376
101c142
62dd38d
f7d283c
 
 
62dd38d
101c142
 
b0e6781
62dd38d
b0e6781
 
4c1d731
b0e6781
 
101c142
62dd38d
101c142
f7d283c
62dd38d
 
4c1d731
b0e6781
62dd38d
 
4c1d731
b0e6781
1d32376
f7d283c
 
 
 
 
1d32376
 
 
b0e6781
62dd38d
b0e6781
 
4c1d731
b0e6781
 
 
1d32376
62dd38d
1d32376
f7d283c
62dd38d
 
 
166575b
b0e6781
62dd38d
4c1d731
1d32376
 
b0e6781
f7d283c
 
 
 
101c142
 
b0e6781
62dd38d
b0e6781
 
4c1d731
b0e6781
 
101c142
62dd38d
101c142
f7d283c
62dd38d
4c1d731
b0e6781
c751340
fa6ba7b
62dd38d
fa6ba7b
 
 
 
f7d283c
fa6ba7b
 
 
 
62dd38d
fa6ba7b
 
 
 
 
 
62dd38d
fa6ba7b
f7d283c
62dd38d
fa6ba7b
 
 
 
 
 
 
f7d283c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
import streamlit as st
from app.draw_diagram import *
from app.content import *
from app.summarization import *

def dataset_contents(dataset, metrics):
    
    custom_css = """
                <style>
                .my-dataset-info {
                # background-color: #F9EBEA;
                # padding: 10px;
                color: #050505;
                font-style: normal;
                font-size: 8px;
                height: auto;
                }
                </style>
                """
    st.markdown(custom_css, unsafe_allow_html=True)
    st.markdown(f"""<div class="my-dataset-info">
                    <p><b>About this dataset</b>: {dataset}</p>
                    </div>""", unsafe_allow_html=True)
    st.markdown(f"""<div class="my-dataset-info">
                    <p><b>About this metric</b>: {metrics}</p>
                    </div>""", unsafe_allow_html=True)


def dashboard():

    with st.container():
        st.title("Leaderboard for AudioBench")
   
        st.markdown("""
            [gh1]: https://github.com/AudioLLMs/AudioBench
            [gh2]: https://github.com/AudioLLMs/AudioBench
            **Toolkit:** [![GitHub Repo stars](https://img.shields.io/github/stars/AudioLLMs/AudioBench?style=social)][gh1] | 
            [**Research Paper**](https://arxiv.org/abs/2406.16020) | 
            **Resource for AudioLLMs:** [![GitHub Repo stars](https://img.shields.io/github/stars/AudioLLMs/Awesome-Audio-LLM?style=social)][gh2]
            """)


    st.markdown("""
            #### Recent updates
            - **Jan. 2025**: Update the layout.
            - **Dec. 2024**: Added MuChoMusic dataset for Music Understanding - MCQ Questions. From Paper: https://arxiv.org/abs/2408.01337.
            - **Dec. 2024**: Singlish ASR task added! The datasets are available on [HF](https://huggingface.co/datasets/MERaLiON/MNSC).
            - **Dec. 2024**: Updated layout and added support for comparison between models with similar sizes. 1) Reorganized layout for a better user experience. 2) Added performance summary for each task.
            - **Aug. 2024**: Initial leaderboard is now online.
            """)

    st.divider()
    
    st.markdown("""
                #### Evaluating Audio-based Large Language Models
                
                - AudioBench is a comprehensive evaluation benchmark designed for general instruction-following audio large language models.
                - AudioBench is an evaluation benchmark that we continually improve and maintain.
                
                Below are the initial 26 datasets that are included in AudioBench. We are now exteneded to over 40 datasets and going to extend to more in the future.
                """
                )


    with st.container():
        
        st.markdown('''
                ''')
        
        st.markdown("###### :dart: Our Benchmark includes: ")
        cols = st.columns(8)
        cols[0].metric(label="Tasks", value=">8")
        cols[1].metric(label="Datasets", value=">40")
        cols[2].metric(label="Evaluated Models", value=">5")
    
    st.divider()
    with st.container():
        left_co, right_co = st.columns([1, 0.1])

        with left_co:
            st.markdown("""
                        ##### Citations :round_pushpin:
                        ```
                        @article{wang2024audiobench,
                            title={AudioBench: A Universal Benchmark for Audio Large Language Models},
                            author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F},
                            journal={arXiv preprint arXiv:2406.16020},
                            year={2024}
                            }
                        ```
                        ```
                        @article{wang2025advancing,
                            title={Advancing Singlish Understanding: Bridging the Gap with Datasets and Multimodal Models},
                            author={Wang, Bin and Zou, Xunlong and Sun, Shuo and Zhang, Wenyu and He, Yingxu and Liu, Zhuohan and Wei, Chengwei and Chen, Nancy F and Aw, AiTi},
                            journal={arXiv preprint arXiv:2501.01034},
                            year={2025}
                            }
                        ```
                        ```
                        @article{he2024meralion,
                            title={MERaLiON-AudioLLM: Technical Report},
                            author={He, Yingxu and Liu, Zhuohan and Sun, Shuo and Wang, Bin and Zhang, Wenyu and Zou, Xunlong and Chen, Nancy F and Aw, Ai Ti},
                            journal={arXiv preprint arXiv:2412.09818},
                            year={2024}
                            }
                        ```
                        ```
                        @article{zhang2024mowe,
                            title={MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders},
                            author={Zhang, Wenyu and Sun, Shuo and Wang, Bin and Zou, Xunlong and Liu, Zhuohan and He, Yingxu and Lin, Geyu and Chen, Nancy F and Aw, Ai Ti},
                            journal={ICASSP},
                            year={2025}
                            }
                        ```
                        """)







def asr_english():
    st.title("Task: Automatic Speech Recognition - English")
    
    sum = ['Overall']
    dataset_lists = [
                    'LibriSpeech-Clean', 
                    'LibriSpeech-Other', 
                    'CommonVoice-15-EN', 
                    'Peoples-Speech', 
                    'GigaSpeech-1', 
                    'Earnings-21', 
                    'Earnings-22', 
                    'TED-LIUM-3', 
                    'TED-LIUM-3-LongForm', 
                    ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('asr_english', ['wer'])
        else:
            dataset_contents(dataset_diaplay_information[filter_1], metrics_info['wer'])
            draw('su', 'asr_english', filter_1, 'wer', cus_sort=True)





def asr_singlish():
    st.title("Task: Automatic Speech Recognition - Singlish")

    sum = ['Overall']
    dataset_lists = [
                    'MNSC-PART1-ASR', 
                    'MNSC-PART2-ASR',
                    'MNSC-PART3-ASR',
                    'MNSC-PART4-ASR',
                    'MNSC-PART5-ASR',
                    'MNSC-PART6-ASR',
                    ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('asr_singlish', ['wer'])
        else:
            dataset_contents(dataset_diaplay_information[filter_1], metrics_info['wer'])
            draw('su', 'asr_singlish', filter_1, 'wer')




def asr_mandarin():
    st.title("Task: Automatic Speech Recognition - Mandarin")

    sum = ['Overall']
    dataset_lists = [
                    'AISHELL-ASR-ZH', 
                    ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('asr_mandarin', ['wer'])
        else:
            dataset_contents(dataset_diaplay_information[filter_1], metrics_info['wer'])
            draw('su', 'asr_mandarin', filter_1, 'wer')

    


def speech_translation():
    st.title("Task: Speech Translation")
    
    sum = ['Overall']
    dataset_lists = [
                        'CoVoST2-EN-ID', 
                        'CoVoST2-EN-ZH',
                        'CoVoST2-EN-TA', 
                        'CoVoST2-ID-EN', 
                        'CoVoST2-ZH-EN', 
                        'CoVoST2-TA-EN']

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('st', ['bleu'])
        else:
            dataset_contents(dataset_diaplay_information[filter_1], metrics_info['bleu'])
            draw('su', 'ST', filter_1, 'bleu')




def speech_question_answering_english():
    st.title("Task: Spoken Question Answering - English")
    
    sum = ['Overall']

    dataset_lists = [
                    'CN-College-Listen-MCQ',
                    'DREAM-TTS-MCQ',
                    'SLUE-P2-SQA5', 
                    'Public-SG-Speech-QA', 
                    'Spoken-SQuAD',
                     ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)

    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('sqa_english', ['llama3_70b_judge'])

        #elif filter_1 in dataset_lists:
        #    dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
        #    draw('su', 'SQA', filter_1, 'llama3_70b_judge')
        
        else:
            dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
            draw('su', 'sqa_english', filter_1, 'llama3_70b_judge')




def speech_question_answering_singlish():
    st.title("Task: Spoken Question Answering - Singlish")
    
    sum = ['Overall']

    dataset_lists = [
              'MNSC-PART3-SQA', 
              'MNSC-PART4-SQA',
              'MNSC-PART5-SQA',
              'MNSC-PART6-SQA',
              ]


    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left: 
        filter_1 = st.selectbox('Dataset', filters_levelone)

    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('sqa_singlish', ['llama3_70b_judge'])
        
        else:
            dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
            draw('su', 'sqa_singlish', filter_1, 'llama3_70b_judge')


def spoken_dialogue_summarization_singlish():
    st.title("Task: Spoken Dialogue Summarization - Singlish")
    
    sum = ['Overall']

    dataset_lists = [
              'MNSC-PART3-SDS', 
              'MNSC-PART4-SDS',
              'MNSC-PART5-SDS',
              'MNSC-PART6-SDS',
              ]


    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left: 
        filter_1 = st.selectbox('Dataset', filters_levelone)

    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('sds_singlish', ['llama3_70b_judge'])
        
        else:
            dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
            draw('su', 'sds_singlish', filter_1, 'llama3_70b_judge')




def speech_instruction():
    st.title("Task: Speech Instruction")
    
    sum = ['Overall']

    dataset_lists = ['OpenHermes-Audio', 
                     'ALPACA-Audio',
                     ]
    
    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)

    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('speech_instruction', ['llama3_70b_judge'])
        else:
            dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
            draw('su', 'speech_instruction', filter_1, 'llama3_70b_judge')




def audio_captioning():
    st.title("Task: Audio Captioning")

    filters_levelone = ['WavCaps', 
                        'AudioCaps',
                        ]
    filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    with middle:
        metric = st.selectbox('Metric', filters_leveltwo)

    if filter_1 or metric:
        dataset_contents(dataset_diaplay_information[filter_1], metrics_info[metric.lower().replace('-', '_')])
        draw('asu', 'audio_captioning', filter_1, metric.lower().replace('-', '_'))




def audio_scene_question_answering():
    st.title("Task: Audio Scene Question Answering")

    sum = ['Overall']

    dataset_lists = ['Clotho-AQA', 
                    'WavCaps-QA', 
                    'AudioCaps-QA']
    
    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('audio_scene_question_answering', ['llama3_70b_judge'])
        else:
            dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
            draw('asu', 'audio_scene_question_answering', filter_1, 'llama3_70b_judge')




def emotion_recognition():
    st.title("Task: Emotion Recognition")

    sum = ['Overall']

    dataset_lists = [
                    'IEMOCAP-Emotion', 
                    'MELD-Sentiment', 
                    'MELD-Emotion',
                    ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)

    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('emotion_recognition', ['llama3_70b_judge'])
        else:
            dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
            draw('vu', 'emotion_recognition', filter_1, 'llama3_70b_judge')




def accent_recognition():
    st.title("Task: Accent Recognition")

    sum = ['Overall']
    dataset_lists = [
        'VoxCeleb-Accent',
        'MNSC-AR-Sentence',
        'MNSC-AR-Dialogue',
        ]


    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)


    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('accent_recognition', ['llama3_70b_judge'])
        else:
            dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
            draw('vu', 'accent_recognition', filter_1, 'llama3_70b_judge')




def gender_recognition():
    st.title("Task: Gender Recognition")
    
    sum = ['Overall']

    dataset_lists =  [
                        'VoxCeleb-Gender', 
                        'IEMOCAP-Gender'
                        ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('gender_recognition', ['llama3_70b_judge'])
        else:
            dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
            draw('vu', 'gender_recognition', filter_1, 'llama3_70b_judge')




def music_understanding():
    st.title("Task: Music Understanding - MCQ Questions")
    
    sum = ['Overall']

    dataset_lists =  ['MuChoMusic',
                      ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('music_understanding', ['llama3_70b_judge'])
        else:
            dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
            draw('vu', 'music_understanding', filter_1, 'llama3_70b_judge')










def under_development():
    st.title("Task: Under Development")
    

    dataset_lists =  [
                      'CNA',
                      'IDPC',
                      'Parliament',
                      'UKUS-News',
                      'Mediacorp',
                      'IDPC-Short',
                      'Parliament-Short',
                      'UKUS-News-Short',
                      'Mediacorp-Short',

                      'YTB-ASR-Batch1',
                      'YTB-ASR-Batch2',
                      'SEAME-Dev-Man',
                      'SEAME-Dev-Sge',

                      'YTB-SQA-Batch1',
                      'YTB-SDS-Batch1',
                      'YTB-PQA-Batch1',

                      ]

    filters_levelone = dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    dataset_contents(dataset_diaplay_information[filter_1], 'under_development')
    
    if filter_1 in [
                      'CNA',
                      'IDPC',
                      'Parliament',
                      'UKUS-News',
                      'Mediacorp',
                      'IDPC-Short',
                      'Parliament-Short',
                      'UKUS-News-Short',
                      'Mediacorp-Short',
                      'YTB-ASR-Batch1',
                      'YTB-ASR-Batch2',
                      'SEAME-Dev-Man',
                      'SEAME-Dev-Sge',
                      ]:
        
        draw('vu', 'under_development_wer', filter_1, 'wer')

    elif filter_1 in [
        'YTB-SQA-Batch1',
        'YTB-SDS-Batch1',
        'YTB-PQA-Batch1',
        ]:
        draw('vu', 'under_development_llama3_70b_judge', filter_1, 'llama3_70b_judge')