File size: 12,912 Bytes
b0e6781
 
166575b
101c142
166575b
 
 
 
 
 
 
 
4c1d731
 
166575b
 
 
 
 
 
 
4c1d731
166575b
 
4c1d731
166575b
 
b0e6781
 
 
 
 
 
 
 
 
9212b5a
b0e6781
 
 
1b96158
372c18e
094ad79
958416e
 
372c18e
094ad79
958416e
372c18e
 
 
094ad79
372c18e
 
 
4c1d731
b0e6781
4c1d731
094ad79
 
 
 
 
 
 
 
 
 
b0e6781
 
094ad79
 
b0e6781
 
4c1d731
b0e6781
 
 
 
 
 
 
 
094ad79
 
 
b0e6781
 
 
 
094ad79
b0e6781
094ad79
 
 
 
b0e6781
 
 
 
 
 
094ad79
 
 
b0e6781
 
4c1d731
b0e6781
1d32376
 
 
101c142
 
 
 
 
 
 
 
 
 
 
b0e6781
1d32376
b0e6781
 
4c1d731
b0e6781
 
101c142
 
 
 
 
b0e6781
1d32376
5792938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d32376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e6781
 
 
4c1d731
b0e6781
1d32376
101c142
b0e6781
 
 
 
f3cadf1
b0e6781
101c142
b0e6781
1d32376
b0e6781
 
4c1d731
b0e6781
 
101c142
 
 
 
166575b
b0e6781
166575b
b0e6781
166575b
b0e6781
 
 
4c1d731
b0e6781
1d32376
101c142
 
 
 
 
b0e6781
1d32376
b0e6781
 
4c1d731
b0e6781
 
101c142
 
 
 
 
b0e6781
 
4c1d731
b0e6781
 
 
 
 
1d32376
b0e6781
 
4c1d731
b0e6781
4c1d731
b0e6781
 
166575b
b0e6781
4c1d731
b0e6781
 
4c1d731
b0e6781
1d32376
101c142
 
 
 
 
 
b0e6781
1d32376
b0e6781
 
4c1d731
b0e6781
 
101c142
 
 
 
1d32376
4c1d731
b0e6781
 
4c1d731
b0e6781
1d32376
101c142
 
b0e6781
 
101c142
 
b0e6781
1d32376
b0e6781
 
4c1d731
b0e6781
 
101c142
 
 
 
 
4c1d731
b0e6781
 
4c1d731
b0e6781
1d32376
 
 
 
 
b0e6781
1d32376
b0e6781
 
4c1d731
b0e6781
 
 
1d32376
 
 
 
 
 
166575b
b0e6781
 
4c1d731
1d32376
 
b0e6781
101c142
b0e6781
101c142
 
b0e6781
1d32376
b0e6781
 
4c1d731
b0e6781
 
101c142
 
 
 
 
4c1d731
b0e6781
 
4c1d731
1d32376
 
 
 
b0e6781
 
 
 
 
101c142
 
b0e6781
1d32376
b0e6781
 
4c1d731
b0e6781
 
101c142
fa6ba7b
101c142
 
 
c751340
fa6ba7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import streamlit as st
from app.draw_diagram import *
from app.content import *
from app.summarization import *

def dataset_contents(dataset, metrics):
    
    custom_css = """
                <style>
                .my-dataset-info {
                # background-color: #F9EBEA;
                # padding: 10px;
                color: #050505;
                font-style: normal;
                font-size: 8px;
                height: auto;
                }
                </style>
                """
    st.markdown(custom_css, unsafe_allow_html=True)
    st.markdown(f"""<div class="my-dataset-info">
                    <p><b>About this dataset</b>: {dataset}</p>
                    </div>""", unsafe_allow_html=True)
    st.markdown(f"""<div class="my-dataset-info">
                    <p><b>About this metric</b>: {metrics}</p>
                    </div>""", unsafe_allow_html=True)


def dashboard():

    with st.container():
        st.title("AudioBench")
   
        st.markdown("""
            [gh]: https://github.com/AudioLLMs/AudioBench
            [![GitHub Repo stars](https://img.shields.io/github/stars/AudioLLMs/AudioBench?style=social)][gh]
            [![GitHub watchers](https://img.shields.io/github/watchers/AudioLLMs/AudioBench?style=social)][gh]
            """)


    st.markdown("""
            ### Changelog

            - **Dec, 2024**: 
                - Added MuChoMusic dataset for Music Understanding - MCQ Questions. From Paper: https://arxiv.org/abs/2408.01337.
                - Singlish ASR task added! The datasets are available on [HF](https://huggingface.co/datasets/MERaLiON/MNSC).

            - **Dec, 2024**: 
                - Updated layout and added support for comparison between models with similar sizes.
                - Reorganized layout for a better user experience.
                - Added performance summary for each task.

            - **Aug 2024**: 
                - Initial leaderboard is now online.
            """)

    st.divider()
    
    st.markdown("""
                #### What is [AudioBench](https://arxiv.org/abs/2406.16020)?
                
                - AudioBench is a comprehensive evaluation benchmark designed for general instruction-following audio large language models.
                - AudioBench is a evaluation benchmark that we consistently put effort in updating and maintaining.
                
                Below are the initial 26 datasets that are included in AudioBench. We are now exteneded to over 40 datasets and going to extend to more in the future.
                """
                )


    with st.container():
        left_co, center_co, right_co = st.columns([1, 0.5, 0.5])
        with left_co:
            st.image("./style/audio_overview.png", 
                     caption="Overview of the datasets in AudioBench.", 
                     )
        
        st.markdown('''

                
                ''')
        
        st.markdown("###### :dart: Our Benchmark includes: ")
        cols = st.columns(10)
        cols[0].metric(label="Tasks", value=">8")
        cols[1].metric(label="Datasets", value=">40")
        cols[2].metric(label="Evaluated Models", value=">5")


    st.divider()
    with st.container():
        left_co, center_co, right_co = st.columns([1, 0.5, 0.5])

        with left_co:
            st.markdown("""
                        ##### Citations :round_pushpin:
                        ```
                        @article{wang2024audiobench,
                            title={AudioBench: A Universal Benchmark for Audio Large Language Models},
                            author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F},
                            journal={arXiv preprint arXiv:2406.16020},
                            year={2024}
                            }
                        ```
                        """)


def asr():
    st.title("Task: Automatic Speech Recognition")
    
    sum = ['Overall']
    dataset_lists = [
                    'LibriSpeech-Test-Clean', 
                    'LibriSpeech-Test-Other', 
                    'Common-Voice-15-En-Test', 
                    'Peoples-Speech-Test', 
                    'GigaSpeech-Test', 
                    'Earnings21-Test', 
                    'Earnings22-Test', 
                    'Tedlium3-Test', 
                    'Tedlium3-Long-form-Test', 
                    ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('ASR', ['wer'])
        else:
            dataset_contents(asr_datsets[filter_1], metrics['wer'])
            draw('su', 'ASR', filter_1, 'wer', cus_sort=True)


def singlish_asr():
    st.title("Task: Automatic Speech Recognition - Singlish")

    sum = ['Overall']
    dataset_lists = [
                    'IMDA-Part1-ASR-Test', 
                    'IMDA-Part2-ASR-Test',
                    'IMDA-Part3-30s-ASR-Test',
                    'IMDA-Part4-30s-ASR-Test',
                    'IMDA-Part5-30s-ASR-Test',
                    'IMDA-Part6-30s-ASR-Test',
                    ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('singlish_asr', ['wer'])
        else:
            dataset_contents(singlish_asr_datasets[filter_1], metrics['wer'])
            draw('su', 'singlish_asr', filter_1, 'wer')


def cnasr():
    st.title("Task: Automatic Speech Recognition - Mandarin")

    sum = ['Overall']
    dataset_lists = [
                    'Aishell-ASR-ZH-Test', 
                    ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('CNASR', ['wer'])
        else:
            dataset_contents(cnasr_datasets[filter_1], metrics['wer'])
            draw('su', 'CNASR', filter_1, 'wer')

    

def sqa():
    st.title("Task: Speech Question Answering")
    
    sum = ['Overall']

    binary = ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']

    rest = ['SLUE-P2-SQA5-Test', 
            'Public-SG-Speech-QA-Test', 
            'Spoken-Squad-Test']

    filters_levelone = sum + binary + rest
    
    left, center, _, middle, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)

    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('SQA', ['llama3_70b_judge_binary', 'llama3_70b_judge'])

        elif filter_1 in binary:
            dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge_binary'])
            draw('su', 'SQA', filter_1, 'llama3_70b_judge_binary')
        
        else:
            dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
            draw('su', 'SQA', filter_1, 'llama3_70b_judge')

def si():
    st.title("Task: Speech Instruction")
    
    sum = ['Overall']

    dataset_lists = ['OpenHermes-Audio-Test', 
                     'ALPACA-Audio-Test']
    
    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)

    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('SI', ['llama3_70b_judge'])
        else:
            dataset_contents(si_datasets[filter_1], metrics['llama3_70b_judge'])
            draw('su', 'SI', filter_1, 'llama3_70b_judge')

def ac():
    st.title("Task: Audio Captioning")

    filters_levelone = ['WavCaps-Test', 
                        'AudioCaps-Test']
    filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
    
    left, center, _, middle, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    with middle:
        metric = st.selectbox('Metric', filters_leveltwo)

    if filter_1 or metric:
        dataset_contents(ac_datasets[filter_1], metrics[metric.lower().replace('-', '_')])
        draw('asu', 'AC',filter_1, metric.lower().replace('-', '_'))


def asqa():
    st.title("Task: Audio Scene Question Answering")

    sum = ['Overall']

    dataset_lists = ['Clotho-AQA-Test', 
                    'WavCaps-QA-Test', 
                    'AudioCaps-QA-Test']
    
    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('AQA', ['llama3_70b_judge'])
        else:
            dataset_contents(asqa_datasets[filter_1], metrics['llama3_70b_judge'])
            draw('asu', 'AQA', filter_1, 'llama3_70b_judge')


def er():
    st.title("Task: Emotion Recognition")

    sum = ['Overall']

    dataset_lists = ['IEMOCAP-Emotion-Test', 
                        'MELD-Sentiment-Test', 
                        'MELD-Emotion-Test']

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)

    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('ER', ['llama3_70b_judge_binary'])
        else:
            dataset_contents(er_datasets[filter_1], metrics['llama3_70b_judge_binary'])
            draw('vu', 'ER', filter_1, 'llama3_70b_judge_binary')


def ar():
    st.title("Task: Accent Recognition")

    sum = ['Overall']
    dataset_lists = ['VoxCeleb-Accent-Test']


    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)


    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('AR', ['llama3_70b_judge'])
        # sum_table('aR', 'llama3_70b_judge')
        else:
            dataset_contents(ar_datsets[filter_1], metrics['llama3_70b_judge'])
            draw('vu', 'AR', filter_1, 'llama3_70b_judge')


def gr():
    st.title("Task: Gender Recognition")
    
    sum = ['Overall']

    dataset_lists =  ['VoxCeleb-Gender-Test', 
                        'IEMOCAP-Gender-Test']

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('GR', ['llama3_70b_judge_binary'])
        else:
            dataset_contents(gr_datasets[filter_1], metrics['llama3_70b_judge_binary'])
            draw('vu', 'GR', filter_1, 'llama3_70b_judge_binary')


def spt():
    st.title("Task: Speech Translation")
    
    sum = ['Overall']
    dataset_lists = [
                        'Covost2-EN-ID-test', 
                        'Covost2-EN-ZH-test',
                        'Covost2-EN-TA-test', 
                        'Covost2-ID-EN-test', 
                        'Covost2-ZH-EN-test', 
                        'Covost2-TA-EN-test']

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('st', ['bleu'])
        else:
            dataset_contents(spt_datasets[filter_1], metrics['bleu'])
            draw('su', 'ST', filter_1, 'bleu')


def music_mcq():
    st.title("Task: Music Understanding - MCQ Questions")
    
    sum = ['Overall']

    dataset_lists =  ['MuChoMusic-Test',
                      ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('music_mcq', ['llama3_70b_judge_binary'])
        else:
            dataset_contents(MUSIC_MCQ_DATASETS[filter_1], metrics['llama3_70b_judge_binary'])
            draw('vu', 'music_mcq', filter_1, 'llama3_70b_judge_binary')