Spaces:
Running
Running
File size: 9,415 Bytes
b0e6781 fb2bc19 b0e6781 fb2bc19 b0e6781 fb2bc19 58fd59a fb2bc19 b0e6781 29fc06d b0e6781 2c6e148 b0e6781 5a03d31 fcedbb9 5a03d31 fb2bc19 f3cadf1 fb2bc19 f3cadf1 2e7bc8b fb2bc19 f3cadf1 29fc06d b0e6781 2e7bc8b b0e6781 2e7bc8b b0e6781 2e7bc8b b0e6781 5a03d31 b0e6781 f3cadf1 b0e6781 5a03d31 b0e6781 c27dbcd b0e6781 fb2bc19 b0e6781 fb2bc19 2e7bc8b f3cadf1 8ac6498 f3cadf1 fb2bc19 f3cadf1 29fc06d 2e7bc8b f3cadf1 2e7bc8b f3cadf1 29fc06d 2e7bc8b f3cadf1 2e7bc8b f3cadf1 8ac6498 f3cadf1 fb2bc19 f3cadf1 fb2bc19 b0e6781 2e7bc8b 5a03d31 2e7bc8b b0e6781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import streamlit as st
import pandas as pd
import numpy as np
from streamlit_echarts import st_echarts
from streamlit.components.v1 import html
# from PIL import Image
from app.show_examples import *
import pandas as pd
# huggingface_image = Image.open('style/huggingface.jpg')
# other info
#path = "./AudioBench-Leaderboard/additional_info/Leaderboard-Rename.xlsx"
path = "./additional_info/Leaderboard-Rename.xlsx"
info_df = pd.read_excel(path)
# def nav_to(value):
# try:
# url = links_dic[str(value).lower()]
# js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);'
# st_javascript(js)
# except:
# pass
def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
folder = f"./results/{metrics}/"
display_names = {
'SU': 'Speech Understanding',
'ASU': 'Audio Scene Understanding',
'VU': 'Voice Understanding'
}
data_path = f'{folder}/{category_name.lower()}.csv'
chart_data = pd.read_csv(data_path).round(3)
new_dataset_name = dataset_name.replace('-', '_').lower()
chart_data = chart_data[['Model', new_dataset_name]]
st.markdown("""
<style>
.stMultiSelect [data-baseweb=select] span {
max-width: 800px;
font-size: 0.9rem;
background-color: #3C6478 !important; /* Background color for selected items */
color: white; /* Change text color */
back
}
</style>
""", unsafe_allow_html=True)
# remap model names
display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['AudioBench'], info_df['Proper Display Name'])}
chart_data['model_show'] = chart_data['Model'].map(display_model_names)
models = st.multiselect("Please choose the model",
sorted(chart_data['model_show'].tolist()),
default = sorted(chart_data['model_show'].tolist()),
)
chart_data = chart_data[chart_data['model_show'].isin(models)]
chart_data = chart_data.sort_values(by=[new_dataset_name], ascending=cus_sort).dropna(axis=0)
if len(chart_data) == 0:
return
# Get Values
data_values = chart_data.iloc[:, 1]
# Calculate Q1 and Q3
q1 = data_values.quantile(0.25)
q3 = data_values.quantile(0.75)
# Calculate IQR
iqr = q3 - q1
# Define lower and upper bounds (1.5*IQR is a common threshold)
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
# Filter data within the bounds
filtered_data = data_values[(data_values >= lower_bound) & (data_values <= upper_bound)]
# Calculate min and max values after outlier handling
min_value = round(filtered_data.min() - 0.1 * filtered_data.min(), 3)
max_value = round(filtered_data.max() + 0.1 * filtered_data.max(), 3)
options = {
#"title": {"text": f"{display_names[folder_name.upper()]}"},
"title": {"text": f"{dataset_name}"},
"tooltip": {
"trigger": "axis",
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
"triggerOn": 'mousemove',
},
"legend": {"data": ['Overall Accuracy']},
"toolbox": {"feature": {"saveAsImage": {}}},
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
"xAxis": [
{
"type": "category",
"boundaryGap": True,
"triggerEvent": True,
"data": chart_data['model_show'].tolist(),
}
],
"yAxis": [{"type": "value",
"min": min_value,
"max": max_value,
"boundaryGap": True
# "splitNumber": 10
}],
"series": [{
"name": f"{dataset_name}",
"type": "bar",
"data": chart_data[f'{new_dataset_name}'].tolist(),
}],
}
events = {
"click": "function(params) { return params.value }"
}
value = st_echarts(options=options, events=events, height="500px")
# if value != None:
# # print(value)
# nav_to(value)
# if value != None:
# highlight_table_line(value)
'''
Show table
'''
# st.divider()
with st.container():
# st.write("")
st.markdown('##### Results')
# custom_css = """
# """
# st.markdown(custom_css, unsafe_allow_html=True)
model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])}
chart_data['model_link'] = chart_data['model_show'].map(model_link)
chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]]
cur_dataset_name = chart_data_table.columns[1]
print(cur_dataset_name)
if cur_dataset_name in [
'librispeech_test_clean',
'librispeech_test_other',
'common_voice_15_en_test',
'peoples_speech_test',
'gigaspeech_test',
'earnings21_test',
'earnings22_test',
'tedlium3_test',
'tedlium3_long_form_test',
'imda_part1_asr_test',
'imda_part2_asr_test',
'aishell_asr_zh_test',
]:
styled_df = chart_data_table.style.highlight_min(
subset=[chart_data_table.columns[1]], color='yellow'
)
else:
chart_data_table = chart_data_table.sort_values(
by=chart_data_table.columns[1],
ascending=False
).reset_index(drop=True)
styled_df = chart_data_table.style.highlight_max(
subset=[chart_data_table.columns[1]], color='yellow'
)
st.dataframe(
styled_df,
column_config={
'model_show': 'Model',
chart_data_table.columns[1]: {'alignment': 'left'},
"model_link": st.column_config.LinkColumn(
"Model Link",
# # # help="",
# validate=r"^https://(.*?)$",
# # max_chars=100,
# display_text=r"\[(.*?)\]"
),
},
hide_index=True,
use_container_width=True
)
# s = ''
# for model in models:
# try:
# # <td align="center"><input type="checkbox" name="select"></td>
# s += f"""<tr>
# <td><a href={model_link[model]}>{model}</a></td>
# <td>{chart_data[chart_data['Model'] == model][new_dataset_name].tolist()[0]}</td>
# </tr>"""
# except:
# # print(f"{model} is not in {dataset_name}")
# continue
# # select all function
# select_all_function = """<script>
# function toggle(source) {
# var checkboxes = document.querySelectorAll('input[type="checkbox"]');
# for (var i = 0; i < checkboxes.length; i++) {
# if (checkboxes[i] != source)
# checkboxes[i].checked = source.checked;
# }
# }
# </script>"""
# st.markdown(f"""
# <div class="select_all">{select_all_function}</div>
# """, unsafe_allow_html=True)
# info_body_details = f"""
# <table style="width:80%">
# <thead>
# <tr style="text-align: center;">
# <th style="width:45%">MODEL</th>
# <th style="width:45%">{dataset_name}</th>
# </tr>
# {s}
# </thead>
# </table>
# """
# #<th style="width:10%"><input type="checkbox" onclick="toggle(this);"></th>
# # html_code = custom_css + select_all_function + info_body_details
# # html(html_code, height = 300)
# st.markdown(f"""
# <div class="my-data-table">{info_body_details}</div>
# """, unsafe_allow_html=True)
# st.dataframe(chart_data,
# # column_config = {
# # "Link": st.column_config.LinkColumn(
# # display_text= st.image(huggingface_image)
# # ),
# # },
# hide_index = True,
# use_container_width=True)
'''
show samples
'''
if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Test', 'Tedlium3-Long-form-Test']:
pass
else:
show_examples(category_name, dataset_name, chart_data['Model'].tolist(), display_model_names)
|