File size: 9,415 Bytes
b0e6781
 
 
 
fb2bc19
b0e6781
 
fb2bc19
b0e6781
 
 
fb2bc19
58fd59a
 
fb2bc19
 
 
 
 
 
 
 
 
b0e6781
29fc06d
b0e6781
 
 
 
 
 
 
 
 
 
2c6e148
b0e6781
 
 
5a03d31
 
fcedbb9
 
 
 
 
 
 
5a03d31
 
fb2bc19
 
 
f3cadf1
fb2bc19
 
f3cadf1
2e7bc8b
 
fb2bc19
f3cadf1
29fc06d
b0e6781
 
 
2e7bc8b
 
 
b0e6781
2e7bc8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0e6781
 
2e7bc8b
 
b0e6781
 
 
 
 
 
 
 
 
 
 
5a03d31
b0e6781
f3cadf1
b0e6781
 
 
 
 
5a03d31
b0e6781
 
 
 
c27dbcd
b0e6781
 
 
 
 
 
 
 
 
 
fb2bc19
 
 
b0e6781
 
 
 
 
 
 
 
fb2bc19
 
2e7bc8b
f3cadf1
8ac6498
f3cadf1
 
fb2bc19
 
 
f3cadf1
 
29fc06d
 
2e7bc8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3cadf1
2e7bc8b
f3cadf1
29fc06d
2e7bc8b
f3cadf1
 
 
 
 
 
 
 
 
 
 
2e7bc8b
 
 
f3cadf1
 
 
 
 
 
 
 
 
 
 
 
 
8ac6498
f3cadf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2bc19
f3cadf1
 
 
fb2bc19
 
 
 
 
 
 
 
 
 
b0e6781
 
 
2e7bc8b
5a03d31
 
2e7bc8b
b0e6781
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import streamlit as st
import pandas as pd
import numpy as np
from streamlit_echarts import st_echarts
from streamlit.components.v1 import html
# from PIL import Image 
from app.show_examples import *
import pandas as pd

# huggingface_image = Image.open('style/huggingface.jpg')

# other info 
#path = "./AudioBench-Leaderboard/additional_info/Leaderboard-Rename.xlsx"
path = "./additional_info/Leaderboard-Rename.xlsx"
info_df = pd.read_excel(path)

# def nav_to(value):
#     try:
#         url = links_dic[str(value).lower()]
#         js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);'
#         st_javascript(js)
#     except:
#         pass

def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
    
    folder = f"./results/{metrics}/"

    display_names = {
        'SU': 'Speech Understanding',
        'ASU': 'Audio Scene Understanding',
        'VU': 'Voice Understanding'
    }
    
    data_path = f'{folder}/{category_name.lower()}.csv'
    chart_data = pd.read_csv(data_path).round(3)
    new_dataset_name = dataset_name.replace('-', '_').lower()
    chart_data = chart_data[['Model', new_dataset_name]]
    
    st.markdown("""
                <style>
                .stMultiSelect [data-baseweb=select] span {
                    max-width: 800px;
                    font-size: 0.9rem;
                    background-color: #3C6478 !important; /* Background color for selected items */
                    color: white; /* Change text color */
                    back
                }
                </style>
                """, unsafe_allow_html=True)
    
    # remap model names
    display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['AudioBench'], info_df['Proper Display Name'])}
    chart_data['model_show'] = chart_data['Model'].map(display_model_names)

    models = st.multiselect("Please choose the model", 
                            sorted(chart_data['model_show'].tolist()), 
                            default = sorted(chart_data['model_show'].tolist()),
                            )
    
    chart_data = chart_data[chart_data['model_show'].isin(models)]
    chart_data = chart_data.sort_values(by=[new_dataset_name], ascending=cus_sort).dropna(axis=0)

    if len(chart_data) == 0:
        return

    # Get Values
    data_values = chart_data.iloc[:, 1]
    
    # Calculate Q1 and Q3
    q1 = data_values.quantile(0.25)
    q3 = data_values.quantile(0.75)

    # Calculate IQR
    iqr = q3 - q1

    # Define lower and upper bounds (1.5*IQR is a common threshold)
    lower_bound = q1 - 1.5 * iqr
    upper_bound = q3 + 1.5 * iqr

    # Filter data within the bounds
    filtered_data = data_values[(data_values >= lower_bound) & (data_values <= upper_bound)]

    # Calculate min and max values after outlier handling
    min_value = round(filtered_data.min() - 0.1 * filtered_data.min(), 3)
    max_value = round(filtered_data.max() + 0.1 * filtered_data.max(), 3)

    options = {
        #"title": {"text": f"{display_names[folder_name.upper()]}"},
        "title": {"text": f"{dataset_name}"},
        "tooltip": {
            "trigger": "axis",
            "axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
            "triggerOn": 'mousemove',
        },
        "legend": {"data": ['Overall Accuracy']},
        "toolbox": {"feature": {"saveAsImage": {}}},
        "grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
        "xAxis": [
            {
                "type": "category",
                "boundaryGap": True,
                "triggerEvent": True,
                "data":  chart_data['model_show'].tolist(),
            }
        ],
        "yAxis": [{"type": "value", 
                    "min": min_value,
                    "max": max_value, 
                    "boundaryGap": True
                    # "splitNumber": 10
                    }],
        "series": [{
                "name": f"{dataset_name}",
                "type": "bar",
                "data": chart_data[f'{new_dataset_name}'].tolist(),
            }],
    }
    
    events = {
        "click": "function(params) { return params.value }"
    }

    value = st_echarts(options=options, events=events, height="500px")
    
    # if value != None:
    #     # print(value)
    #     nav_to(value)

    # if value != None:
    #     highlight_table_line(value)

    '''
    Show table
    '''
    # st.divider()
    with st.container():
        # st.write("")
        st.markdown('##### Results')
        # custom_css = """
                   
        #             """
        # st.markdown(custom_css, unsafe_allow_html=True)
        
        model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])}

        chart_data['model_link'] = chart_data['model_show'].map(model_link) 

        chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]]

        cur_dataset_name = chart_data_table.columns[1]
        print(cur_dataset_name)

        if cur_dataset_name in [
                            'librispeech_test_clean',
                            'librispeech_test_other',
                            'common_voice_15_en_test',
                            'peoples_speech_test',
                            'gigaspeech_test',
                            'earnings21_test',
                            'earnings22_test',
                            'tedlium3_test',
                            'tedlium3_long_form_test',
                            'imda_part1_asr_test',
                            'imda_part2_asr_test',

                            'aishell_asr_zh_test',
                            ]:
            
            styled_df = chart_data_table.style.highlight_min(
                subset=[chart_data_table.columns[1]], color='yellow'
            )
        else:

            chart_data_table = chart_data_table.sort_values(
                    by=chart_data_table.columns[1],
                    ascending=False
                ).reset_index(drop=True)

            styled_df = chart_data_table.style.highlight_max(
                subset=[chart_data_table.columns[1]], color='yellow'
            )

        st.dataframe(
                styled_df,
                column_config={
                    'model_show': 'Model',
                    chart_data_table.columns[1]: {'alignment': 'left'},
                    "model_link": st.column_config.LinkColumn(
                        "Model Link",
                        # # # help="",
                        # validate=r"^https://(.*?)$",
                        # # max_chars=100,
                        # display_text=r"\[(.*?)\]"
                    ),
                },
                hide_index=True,
                use_container_width=True
            )
        

        


        # s = ''
        # for model in models:
        #     try:
        #         # <td align="center"><input type="checkbox" name="select"></td>
        #         s += f"""<tr>
        #             <td><a href={model_link[model]}>{model}</a></td>
        #             <td>{chart_data[chart_data['Model'] == model][new_dataset_name].tolist()[0]}</td>
        #         </tr>"""
        #     except:
        #         # print(f"{model} is not in {dataset_name}")
        #         continue
        
        # # select all function
        # select_all_function = """<script>
        #     function toggle(source) {
        #         var checkboxes = document.querySelectorAll('input[type="checkbox"]');
        #         for (var i = 0; i < checkboxes.length; i++) {
        #             if (checkboxes[i] != source)
        #                 checkboxes[i].checked = source.checked;
        #         }
        #     }
        # </script>"""
        # st.markdown(f"""
        #             <div class="select_all">{select_all_function}</div>
        #             """, unsafe_allow_html=True)

        # info_body_details = f"""
        #     <table style="width:80%">
        #         <thead>
        #             <tr style="text-align: center;">
        #                 <th style="width:45%">MODEL</th>
        #                 <th style="width:45%">{dataset_name}</th>
        #             </tr>
        #             {s}
        #         </thead>
        #     </table>
        # """
        # #<th style="width:10%"><input type="checkbox" onclick="toggle(this);"></th>
        # # html_code = custom_css + select_all_function + info_body_details
        # # html(html_code, height = 300)
                    
        # st.markdown(f"""
        #             <div class="my-data-table">{info_body_details}</div>
        #             """, unsafe_allow_html=True)
        
        
    # st.dataframe(chart_data,
    #             #  column_config = {
    #             #      "Link": st.column_config.LinkColumn(
    #             #          display_text= st.image(huggingface_image)
    #             #      ),
    #             #  }, 
    #                 hide_index = True, 
    #                 use_container_width=True)
    '''
    show samples
    '''
    if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Test', 'Tedlium3-Long-form-Test']:
        pass
    else:
        show_examples(category_name, dataset_name, chart_data['Model'].tolist(), display_model_names)