Spaces:
Running
Running
File size: 9,534 Bytes
62dd38d 1f3a4ec 5792938 1f3a4ec 5792938 166575b 1f3a4ec 62dd38d 166575b 62dd38d 166575b 62dd38d 1f3a4ec 166575b 62dd38d 1f3a4ec 166575b 62dd38d 166575b 1f3a4ec 166575b 62dd38d 166575b 62dd38d 166575b 1f3a4ec 166575b fa6ba7b 166575b 62dd38d 1f3a4ec 62dd38d 1d32376 62dd38d 1d32376 62dd38d 1d32376 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
dataname_column_rename_in_table = {
'librispeech_test_clean' : 'LibriSpeech-Clean',
'librispeech_test_other' : 'LibriSpeech-Other',
'common_voice_15_en_test' : 'CommonVoice-15-EN',
'peoples_speech_test' : 'Peoples-Speech',
'gigaspeech_test' : 'GigaSpeech-1',
'earnings21_test' : 'Earnings-21',
'earnings22_test' : 'Earnings-22',
'tedlium3_test' : 'TED-LIUM-3',
'tedlium3_long_form_test' : 'TED-LIUM-3-Long',
'aishell_asr_zh_test' : 'Aishell-ASR-ZH',
'covost2_en_id_test' : 'CoVoST2-EN-ID',
'covost2_en_zh_test' : 'CoVoST2-EN-ZH',
'covost2_en_ta_test' : 'CoVoST2-EN-TA',
'covost2_id_en_test' : 'CoVoST2-ID-EN',
'covost2_zh_en_test' : 'CoVoST2-ZH-EN',
'covost2_ta_en_test' : 'CoVoST2-TA-EN',
'cn_college_listen_mcq_test' : 'CN-College-Listen-MCQ',
'dream_tts_mcq_test' : 'DREAM-TTS-MCQ',
'slue_p2_sqa5_test' : 'SLUE-P2-SQA5',
'public_sg_speech_qa_test' : 'Public-SG-Speech-QA',
'spoken_squad_test' : 'Spoken-SQuAD',
'openhermes_audio_test' : 'OpenHermes-Audio',
'alpaca_audio_test' : 'ALPACA-Audio',
'wavcaps_test' : 'WavCaps',
'audiocaps_test' : 'AudioCaps',
'clotho_aqa_test' : 'Clotho-AQA',
'wavcaps_qa_test' : 'WavCaps-QA',
'audiocaps_qa_test' : 'AudioCaps-QA',
'voxceleb_accent_test' : 'VoxCeleb-Accent',
'voxceleb_gender_test' : 'VoxCeleb-Gender',
'iemocap_gender_test' : 'IEMOCAP-Gender',
'iemocap_emotion_test' : 'IEMOCAP-Emotion',
'meld_sentiment_test' : 'MELD-Sentiment',
'meld_emotion_test' : 'MELD-Emotion',
'imda_part1_asr_test' : 'IMDA-Part1-ASR',
'imda_part2_asr_test' : 'IMDA-Part2-ASR',
'imda_part3_30s_asr_test' : 'IMDA-Part3-30s-ASR',
'imda_part4_30s_asr_test' : 'IMDA-Part4-30s-ASR',
'imda_part5_30s_asr_test' : 'IMDA-Part5-30s-ASR',
'imda_part6_30s_asr_test' : 'IMDA-Part6-30s-ASR',
'muchomusic_test' : 'MuChoMusic',
'imda_part3_30s_sqa_human_test': 'MNSC-PART3-SQA',
'imda_part4_30s_sqa_human_test': 'MNSC-PART4-SQA',
'imda_part5_30s_sqa_human_test': 'MNSC-PART5-SQA',
'imda_part6_30s_sqa_human_test': 'MNSC-PART6-SQA',
}
asr_datsets = {'LibriSpeech-Test-Clean': 'A clean, high-quality testset of the LibriSpeech dataset, used for ASR testing.',
'LibriSpeech-Test-Other' : 'A more challenging, noisier testset of the LibriSpeech dataset for ASR testing.',
'Common-Voice-15-En-Test': 'Test set from the Common Voice project, which is a crowd-sourced, multilingual speech dataset.',
'Peoples-Speech-Test' : 'A large-scale, open-source speech recognition dataset, with diverse accents and domains.',
'GigaSpeech-Test' : 'A large-scale ASR dataset with diverse audio sources like podcasts, interviews, etc.',
'Earnings21-Test' : 'ASR test dataset focused on earnings calls from 2021, with professional speech and financial jargon.',
'Earnings22-Test' : 'Similar to Earnings21, but covering earnings calls from 2022.',
'Tedlium3-Test' : 'A test set derived from TED talks, covering diverse speakers and topics.',
'Tedlium3-Long-form-Test': 'A longer version of the TED-LIUM dataset, containing extended audio samples. This poses challenges to existing fusion methods in handling long audios. However, it provides benchmark for future development.',
}
singlish_asr_datasets = {
'IMDA-Part1-ASR-Test' : 'Speech recognition test data from the IMDA NSC project, Part 1.',
'IMDA-Part2-ASR-Test' : 'Speech recognition test data from the IMDA NSC project, Part 2.',
'IMDA-Part3-30s-ASR-Test': 'Speech recognition test data from the IMDA NSC project, Part 3.',
'IMDA-Part4-30s-ASR-Test': 'Speech recognition test data from the IMDA NSC project, Part 4.',
'IMDA-Part5-30s-ASR-Test': 'Speech recognition test data from the IMDA NSC project, Part 5.',
'IMDA-Part6-30s-ASR-Test': 'Speech recognition test data from the IMDA NSC project, Part 6.'
}
sqa_datasets = {'CN-College-Listen-MCQ-Test': 'Chinese College English Listening Test, with multiple-choice questions.',
'DREAM-TTS-MCQ-Test' : 'DREAM dataset for spoken question-answering, derived from textual data and synthesized speech.',
'SLUE-P2-SQA5-Test' : 'Spoken Language Understanding Evaluation (SLUE) dataset, part 2, focused on QA tasks.',
'Public-SG-Speech-QA-Test': 'Public dataset for speech-based question answering, gathered from Singapore.',
'Spoken-Squad-Test' : 'Spoken SQuAD dataset, based on the textual SQuAD dataset, converted into audio.'
}
sqa_singlish_datasets = {
'MNSC-PART3-SQA': 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 3.',
'MNSC-PART4-SQA': 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 4.',
'MNSC-PART5-SQA': 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 5.',
'MNSC-PART6-SQA': 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 6.',
}
si_datasets = {
'OpenHermes-Audio-Test': 'Test set for spoken instructions. Synthesized from the OpenHermes dataset.',
'ALPACA-Audio-Test' : 'Spoken version of the ALPACA dataset, used for evaluating instruction following in audio.'
}
ac_datasets = {
'WavCaps-Test' : 'WavCaps is a dataset for testing audio captioning, where models generate textual descriptions of audio clips.',
'AudioCaps-Test': 'AudioCaps dataset, used for generating captions from general audio events.'
}
asqa_datasets = {
'Clotho-AQA-Test' : 'Clotho dataset adapted for audio-based question answering, containing audio clips and questions.',
'WavCaps-QA-Test' : 'Question-answering test dataset derived from WavCaps, focusing on audio content.',
'AudioCaps-QA-Test': 'AudioCaps adapted for question-answering tasks, using audio events as input for Q&A.'
}
er_datasets = {
'IEMOCAP-Emotion-Test': 'Emotion recognition test data from the IEMOCAP dataset, focusing on identifying emotions in speech.',
'MELD-Sentiment-Test' : 'Sentiment recognition from speech using the MELD dataset, classifying positive, negative, or neutral sentiments.',
'MELD-Emotion-Test' : 'Emotion classification in speech using MELD, detecting specific emotions like happiness, anger, etc.'
}
ar_datsets = {
'VoxCeleb-Accent-Test': 'Test dataset for accent recognition, based on VoxCeleb, a large speaker identification dataset.'
}
gr_datasets = {
'VoxCeleb-Gender-Test': 'Test dataset for gender classification, also derived from VoxCeleb.',
'IEMOCAP-Gender-Test' : 'Gender classification based on the IEMOCAP dataset.'
}
spt_datasets = {
'CoVoST2-EN-ID-test': 'CoVoST 2 dataset for speech translation from English to Indonesian.',
'CoVoST2-EN-ZH-test': 'CoVoST 2 dataset for speech translation from English to Chinese.',
'CoVoST2-EN-TA-test': 'CoVoST 2 dataset for speech translation from English to Tamil.',
'CoVoST2-ID-EN-test': 'CoVoST 2 dataset for speech translation from Indonesian to English.',
'CoVoST2-ZH-EN-test': 'CoVoST 2 dataset for speech translation from Chinese to English.',
'CoVoST2-TA-EN-test': 'CoVoST 2 dataset for speech translation from Tamil to English.'
}
cnasr_datasets = {
'Aishell-ASR-ZH-Test': 'ASR test dataset for Mandarin Chinese, based on the Aishell dataset.'
}
MUSIC_MCQ_DATASETS = {
'MuChoMusic-Test': 'Test dataset for music understanding, from paper: MuChoMusic: Evaluating Music Understanding in Multimodal Audio-Language Models.'
}
metrics = {
'wer' : 'Word Error Rate (WER), a common metric for ASR evaluation. (The lower, the better)',
'llama3_70b_judge_binary': 'Binary evaluation using the LLAMA3-70B model, for tasks requiring a binary outcome. (0-100 based on score 0-1)',
'llama3_70b_judge' : 'General evaluation using the LLAMA3-70B model, typically scoring based on subjective judgments. (0-100 based on score 0-5)',
'meteor' : 'METEOR, a metric used for evaluating text generation, often used in translation or summarization tasks. (Sensitive to output length)',
'bleu' : 'BLEU (Bilingual Evaluation Understudy), another text generation evaluation metric commonly used in machine translation. (Sensitive to output length)',
}
metrics_info = {
'wer' : 'Word Error Rate (WER) - The Lower, the better.',
'llama3_70b_judge_binary': 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
'llama3_70b_judge' : 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
'meteor' : 'METEOR Score. The higher, the better.',
'bleu' : 'BLEU Score. The higher, the better.',
}
|