Spaces:
Running
Running
File size: 8,941 Bytes
b0e6781 fb2bc19 b0e6781 1d32376 fb2bc19 b0e6781 4c1d731 b0e6781 29fc06d b0e6781 62dd38d b0e6781 1d32376 b0e6781 2c6e148 b0e6781 1d32376 5a03d31 fcedbb9 5a03d31 fb2bc19 4c1d731 fb2bc19 f3cadf1 2e7bc8b fb2bc19 f3cadf1 29fc06d b0e6781 4c1d731 2e7bc8b b0e6781 4c1d731 b0e6781 4c1d731 b0e6781 fb2bc19 4c1d731 fb2bc19 f3cadf1 29fc06d 4c1d731 f92272f 2e7bc8b 101c142 bd0c4d1 101c142 2e7bc8b 5792938 2e7bc8b 101c142 2e7bc8b 101c142 f92272f 101c142 c751340 f3cadf1 2e7bc8b f3cadf1 29fc06d 2e7bc8b f3cadf1 2e7bc8b 4c1d731 f3cadf1 4c1d731 f3cadf1 b0e6781 4c1d731 b0e6781 4c1d731 1d32376 4c1d731 1d32376 4c1d731 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import streamlit as st
import pandas as pd
import numpy as np
from streamlit_echarts import st_echarts
from streamlit.components.v1 import html
# from PIL import Image
from app.show_examples import *
from app.content import *
import pandas as pd
from model_information import get_dataframe
info_df = get_dataframe()
def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
folder = f"./results_organized/{metrics}/"
# Load the results from CSV
data_path = f'{folder}/{category_name.lower()}.csv'
chart_data = pd.read_csv(data_path).round(3)
new_dataset_name = dataset_name.replace('-', '_').lower()
chart_data = chart_data[['Model', new_dataset_name]]
# Rename to proper display name
new_dataset_name = dataname_column_rename_in_table[new_dataset_name]
chart_data = chart_data.rename(columns=dataname_column_rename_in_table)
st.markdown("""
<style>
.stMultiSelect [data-baseweb=select] span {
max-width: 800px;
font-size: 0.9rem;
background-color: #3C6478 !important; /* Background color for selected items */
color: white; /* Change text color */
back
}
</style>
""", unsafe_allow_html=True)
# remap model names
display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
chart_data['model_show'] = chart_data['Model'].map(lambda x: display_model_names.get(x, x))
models = st.multiselect("Please choose the model",
sorted(chart_data['model_show'].tolist()),
default = sorted(chart_data['model_show'].tolist()),
)
chart_data = chart_data[chart_data['model_show'].isin(models)]
chart_data = chart_data.sort_values(by=[new_dataset_name], ascending=cus_sort).dropna(axis=0)
if len(chart_data) == 0: return
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
'''
Show Table
'''
with st.container():
st.markdown('##### TABLE')
model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])}
chart_data['model_link'] = chart_data['model_show'].map(model_link)
chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]]
# Format numeric columns to 2 decimal places
#chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: round(float(x), 3) if isinstance(float(x), (int, float)) else float(x))
cur_dataset_name = chart_data_table.columns[1]
def highlight_first_element(x):
# Create a DataFrame with the same shape as the input
df_style = pd.DataFrame('', index=x.index, columns=x.columns)
# Apply background color to the first element in row 0 (df[0][0])
# df_style.iloc[0, 1] = 'background-color: #b0c1d7; color: white'
df_style.iloc[0, 1] = 'background-color: #b0c1d7'
return df_style
if cur_dataset_name in [
'LibriSpeech-Clean',
'LibriSpeech-Other',
'CommonVoice-15-EN',
'Peoples-Speech',
'GigaSpeech-1',
'Earnings-21',
'Earnings-22',
'TED-LIUM-3',
'TED-LIUM-3-Long',
'Aishell-ASR-ZH',
'IMDA-Part1-ASR',
'IMDA-Part2-ASR',
'IMDA-Part3-30s-ASR',
'IMDA-Part4-30s-ASR',
'IMDA-Part5-30s-ASR',
'IMDA-Part6-30s-ASR',
]:
chart_data_table = chart_data_table.sort_values(
by=chart_data_table.columns[1],
ascending=True
).reset_index(drop=True)
else:
chart_data_table = chart_data_table.sort_values(
by=chart_data_table.columns[1],
ascending=False
).reset_index(drop=True)
styled_df = chart_data_table.style.format(
{chart_data_table.columns[1]: "{:.3f}"}
).apply(
highlight_first_element, axis=None
)
st.dataframe(
styled_df,
column_config={
'model_show': 'Model',
chart_data_table.columns[1]: {'alignment': 'left'},
"model_link": st.column_config.LinkColumn(
"Model Link",
),
},
hide_index=True,
use_container_width=True
)
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
'''
Show Chart
'''
# Initialize a session state variable for toggling the chart visibility
if "show_chart" not in st.session_state:
st.session_state.show_chart = False
# Create a button to toggle visibility
if st.button("Show Chart"):
st.session_state.show_chart = not st.session_state.show_chart
if st.session_state.show_chart:
with st.container():
st.markdown('##### CHART')
# Get Values
data_values = chart_data.iloc[:, 1]
# Calculate Q1 and Q3
q1 = data_values.quantile(0.25)
q3 = data_values.quantile(0.75)
# Calculate IQR
iqr = q3 - q1
# Define lower and upper bounds (1.5*IQR is a common threshold)
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
# Filter data within the bounds
filtered_data = data_values[(data_values >= lower_bound) & (data_values <= upper_bound)]
# Calculate min and max values after outlier handling
min_value = round(filtered_data.min() - 0.1 * filtered_data.min(), 3)
max_value = round(filtered_data.max() + 0.1 * filtered_data.max(), 3)
options = {
# "title": {"text": f"{dataset_name}"},
"tooltip": {
"trigger": "axis",
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
"triggerOn": 'mousemove',
},
"legend": {"data": ['Overall Accuracy']},
"toolbox": {"feature": {"saveAsImage": {}}},
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
"xAxis": [
{
"type": "category",
"boundaryGap": True,
"triggerEvent": True,
"data": chart_data['model_show'].tolist(),
}
],
"yAxis": [{"type": "value",
"min": min_value,
"max": max_value,
"boundaryGap": True
# "splitNumber": 10
}],
"series": [{
"name": f"{dataset_name}",
"type": "bar",
"data": chart_data[f'{new_dataset_name}'].tolist(),
}],
}
events = {
"click": "function(params) { return params.value }"
}
value = st_echarts(options=options, events=events, height="500px")
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
'''
Show Examples
'''
# Initialize a session state variable for toggling the chart visibility
if "show_examples" not in st.session_state:
st.session_state.show_examples = False
# Create a button to toggle visibility
if st.button("Show Examples"):
st.session_state.show_examples = not st.session_state.show_examples
if st.session_state.show_examples:
st.markdown('To be implemented')
# # if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Test', 'Tedlium3-Long-form-Test']:
# if dataset_name in []:
# pass
# else:
# show_examples(category_name, dataset_name, chart_data['Model'].tolist(), display_model_names)
|