Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from streamlit_echarts import st_echarts | |
# from streamlit_echarts import JsCode | |
from streamlit_javascript import st_javascript | |
# from PIL import Image | |
from app.show_examples import * | |
links_dic = {} | |
links_dic = {k.lower().replace('_', '-') : v for k, v in links_dic.items()} | |
# huggingface_image = Image.open('style/huggingface.jpg') | |
def nav_to(value): | |
try: | |
url = links_dic[str(value).lower()] | |
js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);' | |
st_javascript(js) | |
except: | |
pass | |
def draw(folder_name, category_name, dataset_name, metrics): | |
folder = f"./results/{metrics}/" | |
display_names = { | |
'SU': 'Speech Understanding', | |
'ASU': 'Audio Scene Understanding', | |
'VU': 'Voice Understanding' | |
} | |
data_path = f'{folder}/{category_name.lower()}.csv' | |
chart_data = pd.read_csv(data_path).round(3) | |
new_dataset_name = dataset_name.replace('-', '_').lower() | |
chart_data = chart_data[['Model', new_dataset_name]] | |
st.markdown(""" | |
<style> | |
.stMultiSelect [data-baseweb=select] span{ | |
max-width: 800px; | |
font-size: 0.9rem; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
models = st.multiselect("Please choose the model", chart_data['Model'].tolist(), default = chart_data['Model'].tolist()) | |
chart_data = chart_data[chart_data['Model'].isin(models)] | |
chart_data = chart_data.sort_values(by=[new_dataset_name], ascending=True).dropna(axis=0) | |
if len(chart_data) == 0: | |
return | |
min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1) | |
max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1) | |
options = { | |
"title": {"text": f"{display_names[folder_name.upper()]}"}, | |
"tooltip": { | |
"trigger": "axis", | |
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}}, | |
"triggerOn": 'mousemove', | |
}, | |
"legend": {"data": ['Overall Accuracy']}, | |
"toolbox": {"feature": {"saveAsImage": {}}}, | |
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True}, | |
"xAxis": [ | |
{ | |
"type": "category", | |
"boundaryGap": True, | |
"triggerEvent": True, | |
"data": chart_data['Model'].tolist(), | |
} | |
], | |
"yAxis": [{"type": "value", | |
"min": min_value, | |
"max": max_value, | |
"boundaryGap": True | |
# "splitNumber": 10 | |
}], | |
"series": [{ | |
"name": f"{dataset_name}", | |
"type": "bar", | |
"data": chart_data[f'{new_dataset_name}'].tolist(), | |
}], | |
} | |
events = { | |
"click": "function(params) { return params.value }" | |
} | |
value = st_echarts(options=options, events=events, height="500px") | |
if value != None: | |
# print(value) | |
nav_to(value) | |
# if value != None: | |
# highlight_table_line(value) | |
''' | |
Show table | |
''' | |
# st.divider() | |
st.write("") | |
st.markdown('##### TABLE') | |
# chart_data['Link'] = chart_data['Model'].map(links_dic) | |
st.dataframe(chart_data, | |
# column_config = { | |
# "Link": st.column_config.LinkColumn( | |
# display_text= st.image(huggingface_image) | |
# ), | |
# }, | |
hide_index = True, | |
use_container_width=True) | |
''' | |
show samples | |
''' | |
if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Longform-Test']: | |
pass | |
else: | |
show_examples(category_name, dataset_name, chart_data['Model'].tolist()) | |