Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from streamlit_echarts import st_echarts | |
from app.show_examples import * | |
from app.content import * | |
import pandas as pd | |
from model_information import get_dataframe | |
info_df = get_dataframe() | |
def draw(folder_name, category_name, displayname, metrics, cus_sort=True): | |
folder = f"./results_organized/{metrics}/" | |
# Load the results from CSV | |
data_path = f'{folder}/{category_name.lower()}.csv' | |
chart_data = pd.read_csv(data_path).round(3) | |
dataset_name = displayname2datasetname[displayname] | |
chart_data = chart_data[['Model', dataset_name]] | |
# Rename to proper display name | |
chart_data = chart_data.rename(columns=datasetname2diaplayname) | |
st.markdown(""" | |
<style> | |
.stMultiSelect [data-baseweb=select] span { | |
max-width: 800px; | |
font-size: 0.9rem; | |
background-color: #3C6478 !important; /* Background color for selected items */ | |
color: white; /* Change text color */ | |
back | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# remap model names | |
display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])} | |
chart_data['model_show'] = chart_data['Model'].map(lambda x: display_model_names.get(x, x)) | |
models = st.multiselect("Please choose the model", | |
sorted(chart_data['model_show'].tolist()), | |
default = sorted(chart_data['model_show'].tolist()), | |
) | |
chart_data = chart_data[chart_data['model_show'].isin(models)] | |
chart_data = chart_data.sort_values(by=[displayname], ascending=cus_sort).dropna(axis=0) | |
if len(chart_data) == 0: return | |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = | |
''' | |
Show Table | |
''' | |
with st.container(): | |
st.markdown('##### TABLE') | |
model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])} | |
chart_data['model_link'] = chart_data['model_show'].map(model_link) | |
chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]] | |
# Format numeric columns to 2 decimal places | |
#chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: round(float(x), 3) if isinstance(float(x), (int, float)) else float(x)) | |
cur_dataset_name = chart_data_table.columns[1] | |
def highlight_first_element(x): | |
# Create a DataFrame with the same shape as the input | |
df_style = pd.DataFrame('', index=x.index, columns=x.columns) | |
# Apply background color to the first element in row 0 (df[0][0]) | |
# df_style.iloc[0, 1] = 'background-color: #b0c1d7; color: white' | |
df_style.iloc[0, 1] = 'background-color: #b0c1d7' | |
return df_style | |
if cur_dataset_name in [ | |
'LibriSpeech-Clean', | |
'LibriSpeech-Other', | |
'CommonVoice-15-EN', | |
'Peoples-Speech', | |
'GigaSpeech-1', | |
'Earnings-21', | |
'Earnings-22', | |
'TED-LIUM-3', | |
'TED-LIUM-3-LongForm', | |
'AISHELL-ASR-ZH', | |
'MNSC-PART1-ASR', | |
'MNSC-PART2-ASR', | |
'MNSC-PART3-ASR', | |
'MNSC-PART4-ASR', | |
'MNSC-PART5-ASR', | |
'MNSC-PART6-ASR', | |
'CNA', | |
'IDPC', | |
'Parliament', | |
'UKUS-News', | |
'Mediacorp', | |
'IDPC-Short', | |
'Parliament-Short', | |
'UKUS-News-Short', | |
'Mediacorp-Short', | |
'YTB-ASR-Batch1', | |
'YTB-ASR-Batch2', | |
'SEAME-Dev-Man', | |
'SEAME-Dev-Sge', | |
]: | |
chart_data_table = chart_data_table.sort_values( | |
by=chart_data_table.columns[1], | |
ascending=True | |
).reset_index(drop=True) | |
else: | |
chart_data_table = chart_data_table.sort_values( | |
by=chart_data_table.columns[1], | |
ascending=False | |
).reset_index(drop=True) | |
styled_df = chart_data_table.style.format( | |
{chart_data_table.columns[1]: "{:.3f}"} | |
).apply( | |
highlight_first_element, axis=None | |
) | |
st.dataframe( | |
styled_df, | |
column_config={ | |
'model_show': 'Model', | |
chart_data_table.columns[1]: {'alignment': 'left'}, | |
"model_link": st.column_config.LinkColumn( | |
"Model Link", | |
), | |
}, | |
hide_index=True, | |
use_container_width=True | |
) | |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = | |
''' | |
Show Chart | |
''' | |
# Initialize a session state variable for toggling the chart visibility | |
if "show_chart" not in st.session_state: | |
st.session_state.show_chart = False | |
# Create a button to toggle visibility | |
if st.button("Show Chart"): | |
st.session_state.show_chart = not st.session_state.show_chart | |
if st.session_state.show_chart: | |
with st.container(): | |
st.markdown('##### CHART') | |
# Get Values | |
data_values = chart_data.iloc[:, 1] | |
# Calculate Q1 and Q3 | |
q1 = data_values.quantile(0.25) | |
q3 = data_values.quantile(0.75) | |
# Calculate IQR | |
iqr = q3 - q1 | |
# Define lower and upper bounds (1.5*IQR is a common threshold) | |
lower_bound = q1 - 1.5 * iqr | |
upper_bound = q3 + 1.5 * iqr | |
# Filter data within the bounds | |
filtered_data = data_values[(data_values >= lower_bound) & (data_values <= upper_bound)] | |
# Calculate min and max values after outlier handling | |
min_value = round(filtered_data.min() - 0.1 * filtered_data.min(), 3) | |
max_value = round(filtered_data.max() + 0.1 * filtered_data.max(), 3) | |
options = { | |
# "title": {"text": f"{dataset_name}"}, | |
"tooltip": { | |
"trigger": "axis", | |
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}}, | |
"triggerOn": 'mousemove', | |
}, | |
"legend": {"data": ['Overall Accuracy']}, | |
"toolbox": {"feature": {"saveAsImage": {}}}, | |
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True}, | |
"xAxis": [ | |
{ | |
"type": "category", | |
"boundaryGap": True, | |
"triggerEvent": True, | |
"data": chart_data['model_show'].tolist(), | |
} | |
], | |
"yAxis": [{"type": "value", | |
"min": min_value, | |
"max": max_value, | |
"boundaryGap": True | |
# "splitNumber": 10 | |
}], | |
"series": [{ | |
"name": f"{dataset_name}", | |
"type": "bar", | |
"data": chart_data[f'{displayname}'].tolist(), | |
}], | |
} | |
events = { | |
"click": "function(params) { return params.value }" | |
} | |
value = st_echarts(options=options, events=events, height="500px") | |
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = | |
''' | |
Show Examples | |
''' | |
# Initialize a session state variable for toggling the chart visibility | |
if "show_examples" not in st.session_state: | |
st.session_state.show_examples = False | |
# Create a button to toggle visibility | |
if st.button("Show Examples"): | |
st.session_state.show_examples = not st.session_state.show_examples | |
if st.session_state.show_examples: | |
st.markdown('To be implemented') | |
# # if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Test', 'Tedlium3-Long-form-Test']: | |
# if dataset_name in []: | |
# pass | |
# else: | |
# show_examples(category_name, dataset_name, chart_data['Model'].tolist(), display_model_names) | |