import streamlit as st import pandas as pd import numpy as np from streamlit_echarts import st_echarts from app.show_examples import * from app.content import * import pandas as pd from model_information import get_dataframe info_df = get_dataframe() def draw(folder_name, category_name, displayname, metrics, cus_sort=True): folder = f"./results_organized/{metrics}/" # Load the results from CSV data_path = f'{folder}/{category_name.lower()}.csv' chart_data = pd.read_csv(data_path).round(3) dataset_name = displayname2datasetname[displayname] chart_data = chart_data[['Model', dataset_name]] # Rename to proper display name chart_data = chart_data.rename(columns=datasetname2diaplayname) st.markdown(""" """, unsafe_allow_html=True) # remap model names display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])} chart_data['model_show'] = chart_data['Model'].map(lambda x: display_model_names.get(x, x)) models = st.multiselect("Please choose the model", sorted(chart_data['model_show'].tolist()), default = sorted(chart_data['model_show'].tolist()), ) chart_data = chart_data[chart_data['model_show'].isin(models)] chart_data = chart_data.sort_values(by=[displayname], ascending=cus_sort).dropna(axis=0) if len(chart_data) == 0: return # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ''' Show Table ''' with st.container(): st.markdown('##### TABLE') model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])} chart_data['model_link'] = chart_data['model_show'].map(model_link) chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]] # Format numeric columns to 2 decimal places #chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: round(float(x), 3) if isinstance(float(x), (int, float)) else float(x)) cur_dataset_name = chart_data_table.columns[1] def highlight_first_element(x): # Create a DataFrame with the same shape as the input df_style = pd.DataFrame('', index=x.index, columns=x.columns) # Apply background color to the first element in row 0 (df[0][0]) # df_style.iloc[0, 1] = 'background-color: #b0c1d7; color: white' df_style.iloc[0, 1] = 'background-color: #b0c1d7' return df_style if cur_dataset_name in [ 'LibriSpeech-Clean', 'LibriSpeech-Other', 'CommonVoice-15-EN', 'Peoples-Speech', 'GigaSpeech-1', 'Earnings-21', 'Earnings-22', 'TED-LIUM-3', 'TED-LIUM-3-LongForm', 'AISHELL-ASR-ZH', 'MNSC-PART1-ASR', 'MNSC-PART2-ASR', 'MNSC-PART3-ASR', 'MNSC-PART4-ASR', 'MNSC-PART5-ASR', 'MNSC-PART6-ASR', 'CNA', 'IDPC', 'Parliament', 'UKUS-News', 'Mediacorp', 'IDPC-Short', 'Parliament-Short', 'UKUS-News-Short', 'Mediacorp-Short', 'YTB-ASR-Batch1', 'YTB-ASR-Batch2', 'SEAME-Dev-Man', 'SEAME-Dev-Sge', ]: chart_data_table = chart_data_table.sort_values( by=chart_data_table.columns[1], ascending=True ).reset_index(drop=True) else: chart_data_table = chart_data_table.sort_values( by=chart_data_table.columns[1], ascending=False ).reset_index(drop=True) styled_df = chart_data_table.style.format( {chart_data_table.columns[1]: "{:.3f}"} ).apply( highlight_first_element, axis=None ) st.dataframe( styled_df, column_config={ 'model_show': 'Model', chart_data_table.columns[1]: {'alignment': 'left'}, "model_link": st.column_config.LinkColumn( "Model Link", ), }, hide_index=True, use_container_width=True ) # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ''' Show Chart ''' # Initialize a session state variable for toggling the chart visibility if "show_chart" not in st.session_state: st.session_state.show_chart = False # Create a button to toggle visibility if st.button("Show Chart"): st.session_state.show_chart = not st.session_state.show_chart if st.session_state.show_chart: with st.container(): st.markdown('##### CHART') # Get Values data_values = chart_data.iloc[:, 1] # Calculate Q1 and Q3 q1 = data_values.quantile(0.25) q3 = data_values.quantile(0.75) # Calculate IQR iqr = q3 - q1 # Define lower and upper bounds (1.5*IQR is a common threshold) lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr # Filter data within the bounds filtered_data = data_values[(data_values >= lower_bound) & (data_values <= upper_bound)] # Calculate min and max values after outlier handling min_value = round(filtered_data.min() - 0.1 * filtered_data.min(), 3) max_value = round(filtered_data.max() + 0.1 * filtered_data.max(), 3) options = { # "title": {"text": f"{dataset_name}"}, "tooltip": { "trigger": "axis", "axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}}, "triggerOn": 'mousemove', }, "legend": {"data": ['Overall Accuracy']}, "toolbox": {"feature": {"saveAsImage": {}}}, "grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True}, "xAxis": [ { "type": "category", "boundaryGap": True, "triggerEvent": True, "data": chart_data['model_show'].tolist(), } ], "yAxis": [{"type": "value", "min": min_value, "max": max_value, "boundaryGap": True # "splitNumber": 10 }], "series": [{ "name": f"{dataset_name}", "type": "bar", "data": chart_data[f'{displayname}'].tolist(), }], } events = { "click": "function(params) { return params.value }" } value = st_echarts(options=options, events=events, height="500px") # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ''' Show Examples ''' # Initialize a session state variable for toggling the chart visibility if "show_examples" not in st.session_state: st.session_state.show_examples = False # Create a button to toggle visibility if st.button("Show Examples"): st.session_state.show_examples = not st.session_state.show_examples if st.session_state.show_examples: st.markdown('To be implemented') # # if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Test', 'Tedlium3-Long-form-Test']: # if dataset_name in []: # pass # else: # show_examples(category_name, dataset_name, chart_data['Model'].tolist(), display_model_names)