import pandas as pd # Define the data data = { "Original Name" : [], "Proper Display Name": [], "Link" : [], } # Add model information to the data['Original Name'].append('SALMONN_7B') data['Proper Display Name'].append('Fusion: SALMONN-7B') data['Link'].append('https://arxiv.org/html/2310.13289v2') data['Original Name'].append('WavLLM_fairseq') data['Proper Display Name'].append('Fusion: WavLLM') data['Link'].append('https://arxiv.org/abs/2404.00656') data['Original Name'].append('Qwen2-Audio-7B-Instruct') data['Proper Display Name'].append('Fusion: Qwen2-Audio-7B-Instruct') data['Link'].append('https://arxiv.org/abs/2407.10759') data['Original Name'].append('cascade_whisper_large_v3_llama_3_8b_instruct') data['Proper Display Name'].append('Cascade: Whisper-Large-v3 / Llama-3-8B-Instruct') data['Link'].append('https://arxiv.org/abs/2406.16020') data['Original Name'].append('mowe_audio') data['Proper Display Name'].append('Fusion: MOWE-Audio') data['Link'].append('https://arxiv.org/abs/2409.06635') data['Original Name'].append('Qwen-Audio-Chat') data['Proper Display Name'].append('Fusion: Qwen-Audio-Chat') data['Link'].append('https://arxiv.org/abs/2311.07919') data['Original Name'].append('MERaLiON-AudioLLM-Whisper-SEA-LION') data['Proper Display Name'].append('Fusion: MERaLiON-AudioLLM-Whisper-SEA-LION') data['Link'].append('https://huggingface.co/MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION') data['Original Name'].append('cascade_whisper_large_v2_gemma2_9b_cpt_sea_lionv3_instruct') data['Proper Display Name'].append('Cascade: Whisper-Large-v2 / SEA-LIONv3') data['Link'].append('https://github.com/aisingapore/sealion') data['Original Name'].append('whisper_large_v3') data['Proper Display Name'].append('Whisper-large-v3') data['Link'].append('https://huggingface.co/openai/whisper-large-v3') data['Original Name'].append('gemini-1.5-flash') data['Proper Display Name'].append('Gemini-1.5-Flash') data['Link'].append('https://ai.google.dev/gemini-api/docs/models/gemini') def get_dataframe(): """ Returns a DataFrame with the data and drops rows with missing values. """ df = pd.DataFrame(data) return df.dropna(axis=0)