File size: 13,032 Bytes
14b7942
e531eef
 
 
6a8f361
e531eef
14b7942
e531eef
 
6a8f361
e531eef
 
7234479
 
 
 
 
eefb8e0
e531eef
 
d54deb1
 
 
 
 
 
 
c050149
7d49b15
e531eef
c050149
 
 
 
e531eef
 
 
 
 
 
 
f1dc901
e531eef
b13e78c
 
f1dc901
 
 
e531eef
 
 
 
 
 
7234479
598330f
45fbc6f
ff2492f
 
 
 
 
45fbc6f
74ff7a1
e531eef
14f2401
e531eef
7234479
 
 
68f65b3
7234479
 
 
2927d43
7234479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca6e0d5
7234479
 
ca6e0d5
7234479
 
 
ca6e0d5
7234479
 
ca6e0d5
7234479
 
 
d3d989f
7234479
 
 
ca6e0d5
7234479
 
ca6e0d5
7234479
 
ca6e0d5
7234479
 
 
67da2ee
e531eef
 
 
c050149
aee1475
e531eef
 
aee1475
e531eef
 
 
 
 
 
 
 
 
 
 
6a8f361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7234479
6a8f361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7234479
6a8f361
 
e531eef
 
 
 
 
 
 
 
 
 
 
 
 
7234479
 
938f89c
 
 
7234479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
938f89c
 
 
6a8f361
 
 
 
 
 
938f89c
 
c050149
938f89c
 
 
7234479
 
 
e531eef
7234479
 
e531eef
 
6a8f361
 
 
7234479
6a8f361
 
 
 
 
 
 
 
 
7234479
 
 
 
 
 
 
 
6a8f361
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import base64

import numpy as np
from openai import APIConnectionError
import streamlit as st
import streamlit.components.v1 as components
from streamlit_mic_recorder import mic_recorder

from utils import load_model, generate_response, bytes_to_array, start_server, NoAudioException


general_instructions = [
    "Please transcribe this speech.",
    "Please summarise this speech."
]

def audio_llm():    
    with st.sidebar:
        st.markdown("""<div class="sidebar-intro">
                    <p><strong>📌 Supported Tasks</strong>
                    <p>Automatic Speech Recognation</p>
                    <p>Speech Translation</p>
                    <p>Spoken Question Answering</p>
                    <p>Spoken Dialogue Summarization</p>
                    <p>Speech Instruction</p>
                    <p>Paralinguistics</p>
                    <br>
                    <p><strong>📎 Generation Config</strong>
                    </div>""", unsafe_allow_html=True)

        st.slider(label='Temperature', min_value=0.0, max_value=2.0, value=0.7, key='temperature')

        st.slider(label='Top P', min_value=0.0, max_value=1.0, value=1.0, key='top_p')
    
    
    if st.sidebar.button('Clear History'):
        st.session_state.update(messages=[], 
                                on_upload=False, 
                                on_record=False, 
                                on_select=False, 
                                audio_array=np.array([]))   

    if "server" not in st.session_state:
        st.session_state.server = start_server()
    
    if "client" not in st.session_state or 'model_name' not in st.session_state:
        st.session_state.client, st.session_state.model_name = load_model()

    if "audio_array" not in st.session_state:
        st.session_state.audio_base64 = ''
        st.session_state.audio_array = np.array([])
    
    if "default_instruction" not in st.session_state: 
        st.session_state.default_instruction = []

    st.markdown("<h1 style='text-align: center; color: black;'>MERaLiON-AudioLLM ChatBot 🤖</h1>", unsafe_allow_html=True)
    st.markdown(
        """This demo is based on [MERaLiON-AudioLLM](https://huggingface.co/MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION), 
        developed by I2R, A*STAR, in collaboration with AISG, Singapore. 
        It is tailored for Singapore’s multilingual and multicultural landscape."""
    )

    col1, col2, col3 = st.columns([4, 4, 1.2])

    with col1:
        audio_samples_w_instruct = {
            '1_ASR_IMDA_PART1_ASR_v2_141' : ["Turn the spoken language into a text format.", "Please translate the content into Chinese."],   
            '7_ASR_IMDA_PART3_30_ASR_v2_2269': ["Need this talk written down, please."],
            '17_ASR_IMDA_PART6_30_ASR_v2_1413': ["Record the spoken word in text form."],
            
            '25_ST_COVOST2_ZH-CN_EN_ST_V2_4567': ["Please translate the given speech to English."],
            '26_ST_COVOST2_EN_ZH-CN_ST_V2_5422': ["Please translate the given speech to Chinese."],
            '30_SI_ALPACA-GPT4-AUDIO_SI_V2_1454': ["Please follow the instruction in the speech."],
            
            '32_SQA_CN_COLLEDGE_ENTRANCE_ENGLISH_TEST_SQA_V2_572': ["What does the man think the woman should do at 4:00."],
            '33_SQA_IMDA_PART3_30_SQA_V2_2310': ["Does Speaker2's wife cook for Speaker2 when they are at home."],
            '34_SQA_IMDA_PART3_30_SQA_V2_3621': ["Does the phrase \"#gai-gai#\" have a meaning in Chinese or Hokkien language."],
            '35_SQA_IMDA_PART3_30_SQA_V2_4062': ["What is the color of the vase mentioned in the dialogue."],
            '36_DS_IMDA_PART4_30_DS_V2_849': ["Condense the dialogue into a concise summary highlighting major topics and conclusions."],

            '39_Paralingual_IEMOCAP_ER_V2_91': ["Based on the speaker's speech patterns, what do you think they are feeling."],
            '40_Paralingual_IEMOCAP_ER_V2_567': ["Based on the speaker's speech patterns, what do you think they are feeling."],
            '42_Paralingual_IEMOCAP_GR_V2_320': ["Is it possible for you to identify whether the speaker in this recording is male or female."],
            '43_Paralingual_IEMOCAP_GR_V2_129': ["Is it possible for you to identify whether the speaker in this recording is male or female."],
            '45_Paralingual_IMDA_PART3_30_GR_V2_12312': ["So, who's speaking in the second part of the clip?", "So, who's speaking in the first part of the clip?"],
            '47_Paralingual_IMDA_PART3_30_NR_V2_10479': ["Can you guess which ethnic group this person is from based on their accent."],
            '49_Paralingual_MELD_ER_V2_676': ["What emotions do you think the speaker is expressing."],
            '50_Paralingual_MELD_ER_V2_692': ["Based on the speaker's speech patterns, what do you think they are feeling."],
            '51_Paralingual_VOXCELEB1_GR_V2_2148': ["May I know the gender of the speaker."],
            '53_Paralingual_VOXCELEB1_NR_V2_2286': ["What's the nationality identity of the speaker."],

            '55_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_2': ["What impact would the growth of the healthcare sector have on the country's economy in terms of employment and growth."],
            '56_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_415': ["Based on the statement, can you summarize the speaker's position on the recent controversial issues in Singapore."],
            '57_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_460': ["How does the author respond to parents' worries about masks in schools."],
            
            '2_ASR_IMDA_PART1_ASR_v2_2258': ["Turn the spoken language into a text format.", "Please translate the content into Chinese."],
            '3_ASR_IMDA_PART1_ASR_v2_2265': ["Turn the spoken language into a text format."],

            '4_ASR_IMDA_PART2_ASR_v2_999' : ["Translate the spoken words into text format."], 
            '5_ASR_IMDA_PART2_ASR_v2_2241': ["Translate the spoken words into text format."],
            '6_ASR_IMDA_PART2_ASR_v2_3409': ["Translate the spoken words into text format."],

            '8_ASR_IMDA_PART3_30_ASR_v2_1698': ["Need this talk written down, please."],
            '9_ASR_IMDA_PART3_30_ASR_v2_2474': ["Need this talk written down, please."],

            '11_ASR_IMDA_PART4_30_ASR_v2_3771': ["Write out the dialogue as text."],
            '12_ASR_IMDA_PART4_30_ASR_v2_103' : ["Write out the dialogue as text."],
            '10_ASR_IMDA_PART4_30_ASR_v2_1527': ["Write out the dialogue as text."],
            
            '13_ASR_IMDA_PART5_30_ASR_v2_1446': ["Translate this vocal recording into a textual format."],
            '14_ASR_IMDA_PART5_30_ASR_v2_2281': ["Translate this vocal recording into a textual format."],
            '15_ASR_IMDA_PART5_30_ASR_v2_4388': ["Translate this vocal recording into a textual format."],

            '16_ASR_IMDA_PART6_30_ASR_v2_576': ["Record the spoken word in text form."],
            '18_ASR_IMDA_PART6_30_ASR_v2_2834': ["Record the spoken word in text form."],

            '19_ASR_AIShell_zh_ASR_v2_5044': ["Transform the oral presentation into a text document."],
            '20_ASR_LIBRISPEECH_CLEAN_ASR_V2_833': ["Please provide a written transcription of the speech."],

            '27_ST_COVOST2_EN_ZH-CN_ST_V2_6697': ["Please translate the given speech to Chinese."],
            '28_SI_ALPACA-GPT4-AUDIO_SI_V2_299': ["Please follow the instruction in the speech."],
            '29_SI_ALPACA-GPT4-AUDIO_SI_V2_750': ["Please follow the instruction in the speech."],
        }
        
        audio_sample_names = [audio_sample_name for audio_sample_name in audio_samples_w_instruct.keys()]
       
        st.markdown("**Select Audio From Examples:**")
       
        sample_name = st.selectbox(
            label="**Select Audio:**",
            label_visibility="collapsed",
            options=audio_sample_names,
            index=None,
            placeholder="Select an audio sample:",
            on_change=lambda: st.session_state.update(on_select=True, messages=[]),
            key='select')
       
        if sample_name and st.session_state.on_select:
            audio_bytes = open(f"audio_samples/{sample_name}.wav", "rb").read()
            st.session_state.default_instruction = audio_samples_w_instruct[sample_name]
            st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
            st.session_state.audio_array = bytes_to_array(audio_bytes)


    with col2:
        st.markdown("or **Upload Audio:**")

        uploaded_file = st.file_uploader(
            label="**Upload Audio:**", 
            label_visibility="collapsed",
            type=['wav', 'mp3'],
            on_change=lambda: st.session_state.update(on_upload=True, messages=[]),
            key='upload'
        )
        
        if uploaded_file and st.session_state.on_upload:
            audio_bytes = uploaded_file.read()
            st.session_state.default_instruction = general_instructions
            st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
            st.session_state.audio_array = bytes_to_array(audio_bytes)


    with col3:
        st.markdown("or **Record Audio:**")
        
        recording = mic_recorder(
            format="wav", 
            use_container_width=True, 
            callback=lambda: st.session_state.update(on_record=True, messages=[]),
            key='record')
        
        if recording and st.session_state.on_record:
            audio_bytes = recording["bytes"]
            st.session_state.default_instruction = general_instructions
            st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
            st.session_state.audio_array = bytes_to_array(audio_bytes)
    
    st.markdown(
        """
        <style>
            .st-emotion-cache-1c7y2kd {
                flex-direction: row-reverse;
                text-align: right;
            }
        </style>
        """,
        unsafe_allow_html=True,
    )

    if "prompt" not in st.session_state:
        st.session_state.prompt = ""

    if 'disprompt' not in st.session_state:
        st.session_state.disprompt = False
        
    if "messages" not in st.session_state:
        st.session_state.messages = []
    
    if st.session_state.audio_array.size:
        with st.chat_message("user"):
            st.audio(st.session_state.audio_array, format="audio/wav", sample_rate=16000)
            if st.session_state.audio_array.shape[0] / 16000 > 30.0:
                st.warning("MERaLiON-AudioLLM can only process audio for up to 30 seconds. Audio longer than that will be truncated.")
            st.session_state.update(on_upload=False, on_record=False, on_select=False)
    
            for i, inst in enumerate(st.session_state.default_instruction):
                st.button(
                    f"**Example Instruction {i+1}**: {inst}", 
                    args=(inst,),
                    disabled=st.session_state.disprompt, 
                    on_click=lambda p: st.session_state.update(disprompt=True, prompt=p)
                )

    for message in st.session_state.messages[-2:]:
        with st.chat_message(message["role"]):
            if message.get("error"):
                st.error(message["error"])
            for warning_msg in message.get("warnings", []):
                st.warning(warning_msg)
            if message.get("content"):
                st.write(message["content"])

    if prompt := st.chat_input(
        placeholder="Type Your Instruction Here", 
        disabled=st.session_state.disprompt, 
        on_submit=lambda: st.session_state.update(disprompt=True)
    ):
        st.session_state.prompt = prompt

    if st.session_state.prompt:
        with st.chat_message("user"):
            st.write(st.session_state.prompt)
        st.session_state.messages.append({"role": "user", "content": st.session_state.prompt})
    
        with st.chat_message("assistant"):
            response, error_msg, warnings = "", "", []
            with st.spinner("Thinking..."):
                try:
                    stream, warnings = generate_response(st.session_state.prompt)
                    for warning_msg in warnings:
                        st.warning(warning_msg)
                    response = st.write_stream(stream)
                except NoAudioException:
                    error_msg = "Please specify audio first!"
                except APIConnectionError:
                    error_msg = "Internet connection seems to be down. Please contact the administrator to restart the space."
                except Exception as e:
                    error_msg = f"Caught Exception: {repr(e)}. Please contact the administrator."
        st.session_state.messages.append({
            "role": "assistant", 
            "error": error_msg,
            "warnings": warnings, 
            "content": response
        })

        st.session_state.update(disprompt=False, prompt="")
        st.rerun()