import os import base64 import numpy as np from openai import APIConnectionError import streamlit as st import streamlit.components.v1 as components from streamlit_mic_recorder import mic_recorder from utils import load_model, generate_response, bytes_to_array, start_server, NoAudioException general_instructions = [ "Please transcribe this speech.", "Please summarise this speech." ] def audio_llm(): with st.sidebar: st.markdown("""""", unsafe_allow_html=True) st.slider(label='Temperature', min_value=0.0, max_value=2.0, value=0.7, key='temperature') st.slider(label='Top P', min_value=0.0, max_value=1.0, value=1.0, key='top_p') if st.sidebar.button('Clear History'): st.session_state.update(messages=[], on_upload=False, on_record=False, on_select=False, audio_array=np.array([])) if "server" not in st.session_state: st.session_state.server = start_server() if "client" not in st.session_state or 'model_name' not in st.session_state: st.session_state.client, st.session_state.model_name = load_model() if "audio_array" not in st.session_state: st.session_state.audio_base64 = '' st.session_state.audio_array = np.array([]) if "default_instruction" not in st.session_state: st.session_state.default_instruction = [] st.markdown("

MERaLiON-AudioLLM ChatBot 🤖

", unsafe_allow_html=True) st.markdown( """This demo is based on [MERaLiON-AudioLLM](https://huggingface.co/MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION), developed by I2R, A*STAR, in collaboration with AISG, Singapore. It is tailored for Singapore’s multilingual and multicultural landscape.""" ) col1, col2, col3 = st.columns([4, 4, 1.2]) with col1: audio_samples_w_instruct = { '1_ASR_IMDA_PART1_ASR_v2_141' : ["Turn the spoken language into a text format.", "Please translate the content into Chinese."], '7_ASR_IMDA_PART3_30_ASR_v2_2269': ["Need this talk written down, please."], '17_ASR_IMDA_PART6_30_ASR_v2_1413': ["Record the spoken word in text form."], '25_ST_COVOST2_ZH-CN_EN_ST_V2_4567': ["Please translate the given speech to English."], '26_ST_COVOST2_EN_ZH-CN_ST_V2_5422': ["Please translate the given speech to Chinese."], '30_SI_ALPACA-GPT4-AUDIO_SI_V2_1454': ["Please follow the instruction in the speech."], '32_SQA_CN_COLLEDGE_ENTRANCE_ENGLISH_TEST_SQA_V2_572': ["What does the man think the woman should do at 4:00."], '33_SQA_IMDA_PART3_30_SQA_V2_2310': ["Does Speaker2's wife cook for Speaker2 when they are at home."], '34_SQA_IMDA_PART3_30_SQA_V2_3621': ["Does the phrase \"#gai-gai#\" have a meaning in Chinese or Hokkien language."], '35_SQA_IMDA_PART3_30_SQA_V2_4062': ["What is the color of the vase mentioned in the dialogue."], '36_DS_IMDA_PART4_30_DS_V2_849': ["Condense the dialogue into a concise summary highlighting major topics and conclusions."], '39_Paralingual_IEMOCAP_ER_V2_91': ["Based on the speaker's speech patterns, what do you think they are feeling."], '40_Paralingual_IEMOCAP_ER_V2_567': ["Based on the speaker's speech patterns, what do you think they are feeling."], '42_Paralingual_IEMOCAP_GR_V2_320': ["Is it possible for you to identify whether the speaker in this recording is male or female."], '43_Paralingual_IEMOCAP_GR_V2_129': ["Is it possible for you to identify whether the speaker in this recording is male or female."], '45_Paralingual_IMDA_PART3_30_GR_V2_12312': ["So, who's speaking in the second part of the clip?", "So, who's speaking in the first part of the clip?"], '47_Paralingual_IMDA_PART3_30_NR_V2_10479': ["Can you guess which ethnic group this person is from based on their accent."], '49_Paralingual_MELD_ER_V2_676': ["What emotions do you think the speaker is expressing."], '50_Paralingual_MELD_ER_V2_692': ["Based on the speaker's speech patterns, what do you think they are feeling."], '51_Paralingual_VOXCELEB1_GR_V2_2148': ["May I know the gender of the speaker."], '53_Paralingual_VOXCELEB1_NR_V2_2286': ["What's the nationality identity of the speaker."], '55_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_2': ["What impact would the growth of the healthcare sector have on the country's economy in terms of employment and growth."], '56_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_415': ["Based on the statement, can you summarize the speaker's position on the recent controversial issues in Singapore."], '57_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_460': ["How does the author respond to parents' worries about masks in schools."], '2_ASR_IMDA_PART1_ASR_v2_2258': ["Turn the spoken language into a text format.", "Please translate the content into Chinese."], '3_ASR_IMDA_PART1_ASR_v2_2265': ["Turn the spoken language into a text format."], '4_ASR_IMDA_PART2_ASR_v2_999' : ["Translate the spoken words into text format."], '5_ASR_IMDA_PART2_ASR_v2_2241': ["Translate the spoken words into text format."], '6_ASR_IMDA_PART2_ASR_v2_3409': ["Translate the spoken words into text format."], '8_ASR_IMDA_PART3_30_ASR_v2_1698': ["Need this talk written down, please."], '9_ASR_IMDA_PART3_30_ASR_v2_2474': ["Need this talk written down, please."], '11_ASR_IMDA_PART4_30_ASR_v2_3771': ["Write out the dialogue as text."], '12_ASR_IMDA_PART4_30_ASR_v2_103' : ["Write out the dialogue as text."], '10_ASR_IMDA_PART4_30_ASR_v2_1527': ["Write out the dialogue as text."], '13_ASR_IMDA_PART5_30_ASR_v2_1446': ["Translate this vocal recording into a textual format."], '14_ASR_IMDA_PART5_30_ASR_v2_2281': ["Translate this vocal recording into a textual format."], '15_ASR_IMDA_PART5_30_ASR_v2_4388': ["Translate this vocal recording into a textual format."], '16_ASR_IMDA_PART6_30_ASR_v2_576': ["Record the spoken word in text form."], '18_ASR_IMDA_PART6_30_ASR_v2_2834': ["Record the spoken word in text form."], '19_ASR_AIShell_zh_ASR_v2_5044': ["Transform the oral presentation into a text document."], '20_ASR_LIBRISPEECH_CLEAN_ASR_V2_833': ["Please provide a written transcription of the speech."], '27_ST_COVOST2_EN_ZH-CN_ST_V2_6697': ["Please translate the given speech to Chinese."], '28_SI_ALPACA-GPT4-AUDIO_SI_V2_299': ["Please follow the instruction in the speech."], '29_SI_ALPACA-GPT4-AUDIO_SI_V2_750': ["Please follow the instruction in the speech."], } audio_sample_names = [audio_sample_name for audio_sample_name in audio_samples_w_instruct.keys()] st.markdown("**Select Audio From Examples:**") sample_name = st.selectbox( label="**Select Audio:**", label_visibility="collapsed", options=audio_sample_names, index=None, placeholder="Select an audio sample:", on_change=lambda: st.session_state.update(on_select=True, messages=[]), key='select') if sample_name and st.session_state.on_select: audio_bytes = open(f"audio_samples/{sample_name}.wav", "rb").read() st.session_state.default_instruction = audio_samples_w_instruct[sample_name] st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8') st.session_state.audio_array = bytes_to_array(audio_bytes) with col2: st.markdown("or **Upload Audio:**") uploaded_file = st.file_uploader( label="**Upload Audio:**", label_visibility="collapsed", type=['wav', 'mp3'], on_change=lambda: st.session_state.update(on_upload=True, messages=[]), key='upload' ) if uploaded_file and st.session_state.on_upload: audio_bytes = uploaded_file.read() st.session_state.default_instruction = general_instructions st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8') st.session_state.audio_array = bytes_to_array(audio_bytes) with col3: st.markdown("or **Record Audio:**") recording = mic_recorder( format="wav", use_container_width=True, callback=lambda: st.session_state.update(on_record=True, messages=[]), key='record') if recording and st.session_state.on_record: audio_bytes = recording["bytes"] st.session_state.default_instruction = general_instructions st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8') st.session_state.audio_array = bytes_to_array(audio_bytes) st.markdown( """ """, unsafe_allow_html=True, ) if "prompt" not in st.session_state: st.session_state.prompt = "" if 'disprompt' not in st.session_state: st.session_state.disprompt = False if "messages" not in st.session_state: st.session_state.messages = [] if st.session_state.audio_array.size: with st.chat_message("user"): st.audio(st.session_state.audio_array, format="audio/wav", sample_rate=16000) if st.session_state.audio_array.shape[0] / 16000 > 30.0: st.warning("MERaLiON-AudioLLM can only process audio for up to 30 seconds. Audio longer than that will be truncated.") st.session_state.update(on_upload=False, on_record=False, on_select=False) for i, inst in enumerate(st.session_state.default_instruction): st.button( f"**Example Instruction {i+1}**: {inst}", args=(inst,), disabled=st.session_state.disprompt, on_click=lambda p: st.session_state.update(disprompt=True, prompt=p) ) for message in st.session_state.messages[-2:]: with st.chat_message(message["role"]): if message.get("error"): st.error(message["error"]) for warning_msg in message.get("warnings", []): st.warning(warning_msg) if message.get("content"): st.write(message["content"]) if prompt := st.chat_input( placeholder="Type Your Instruction Here", disabled=st.session_state.disprompt, on_submit=lambda: st.session_state.update(disprompt=True) ): st.session_state.prompt = prompt if st.session_state.prompt: with st.chat_message("user"): st.write(st.session_state.prompt) st.session_state.messages.append({"role": "user", "content": st.session_state.prompt}) with st.chat_message("assistant"): response, error_msg, warnings = "", "", [] with st.spinner("Thinking..."): try: stream, warnings = generate_response(st.session_state.prompt) for warning_msg in warnings: st.warning(warning_msg) response = st.write_stream(stream) except NoAudioException: error_msg = "Please specify audio first!" except APIConnectionError: error_msg = "Internet connection seems to be down. Please contact the administrator to restart the space." except Exception as e: error_msg = f"Caught Exception: {repr(e)}. Please contact the administrator." st.session_state.messages.append({ "role": "assistant", "error": error_msg, "warnings": warnings, "content": response }) st.session_state.update(disprompt=False, prompt="") st.rerun()