Spaces:
Running
Running
File size: 14,077 Bytes
6d0d847 7bbec6f 6d0d847 2115ef1 6d0d847 917eff6 cb69324 917eff6 dd48ec8 917eff6 2115ef1 08d39e4 917eff6 2115ef1 08d39e4 2115ef1 917eff6 4a00668 729da04 4a00668 917eff6 2115ef1 b1eb58e 6d0d847 08d39e4 6d0d847 ab58981 6d0d847 08d39e4 e025c3d 08d39e4 6d0d847 08d39e4 6d0d847 08d39e4 6d0d847 08d39e4 6d0d847 08d39e4 6d0d847 08d39e4 6d0d847 e9e9e4c 6d0d847 08d39e4 6d0d847 08d39e4 6d0d847 a40ee94 e025c3d a40ee94 6d0d847 08d39e4 4babe21 e025c3d 08d39e4 6d0d847 08d39e4 6d0d847 08d39e4 6d0d847 08d39e4 6d0d847 e9e9e4c 6d0d847 e9e9e4c 08d39e4 6d0d847 08d39e4 6d0d847 14fb007 a40ee94 e025c3d a40ee94 0523925 9419db4 a40ee94 6d0d847 917eff6 3a519c9 e025c3d 917eff6 14fb007 9419db4 3a519c9 6d0d847 3c9a4bf 6d0d847 08d39e4 6d0d847 08d39e4 3c9a4bf 08d39e4 e9e9e4c 6d0d847 e9e9e4c 3c9a4bf 6d0d847 08d39e4 6d0d847 917eff6 b767f30 a40ee94 6d0d847 917eff6 6d0d847 3c9a4bf 6d0d847 08d39e4 6d0d847 08d39e4 3c9a4bf 08d39e4 e9e9e4c 6d0d847 e9e9e4c 3c9a4bf da796b1 6d0d847 08d39e4 6d0d847 a40ee94 6d0d847 917eff6 6d0d847 3c9a4bf 6d0d847 08d39e4 6d0d847 08d39e4 3c9a4bf 08d39e4 e9e9e4c 6d0d847 e9e9e4c 3c9a4bf 6d0d847 08d39e4 6d0d847 a40ee94 6d0d847 917eff6 6d0d847 3c9a4bf 6d0d847 08d39e4 6d0d847 08d39e4 3c9a4bf 6d0d847 08d39e4 3c9a4bf 08d39e4 e9e9e4c 6d0d847 e9e9e4c 3c9a4bf 6d0d847 08d39e4 6d0d847 917eff6 6d0d847 3c9a4bf 6d0d847 08d39e4 6d0d847 08d39e4 3c9a4bf 08d39e4 e9e9e4c 6d0d847 e9e9e4c 3c9a4bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import streamlit as st
from app.draw_diagram import *
def dashboard():
with st.container():
st.title("SeaEval")
st.markdown("""
[gh]: https://github.com/SeaEval/SeaEval
[][gh]
""")
st.markdown("""
### Changelog
- **Dec 2024**:
- Added model: **aisingapore/llama3.1-70b-cpt-sea-lionv3-instruct**.
- Updated results for **Cross-MMLU**, **Cross-LogiQA**, **Cross-XQuad**, **MMLU**, **IndoMMLU**, and **SG-Eval-v2** with new prompts (simple prompts to encourage reasoning).
- Added new models: **SEA-LION v3**, **Gemma-2**, and **Sailor 2**.
- **Nov 2024**:
- Updated layout and added support for comparison between models with similar sizes.
""")
st.divider()
st.markdown("#### What is [SeaEval](https://seaeval.github.io/)?")
with st.container():
left_co, cent_co,last_co = st.columns(3)
with cent_co:
st.image("./style/seaeval_overall.png",
# caption="SeaEval data range",
width=500)
st.markdown('''
''')
st.markdown("##### A benchmark for multilingual, multicultral foundation model evaluation consisting of >30 dataset and we are keep expanding over time.")
st.markdown(''':star: How models understand and reason with natural language?
:balloon: Languages: English, Chinese, Malay, Spainish, Indonedian, Vietnamese, Filipino.
''')
st.markdown(''':star: How models comprehend cultural practices, nuances and values?
:balloon: 4 new datasets on Cultural Understanding.
''')
st.markdown(''':star: How models perform across languages in terms of consistency?
:balloon: 2 new datasets with curated metrics for Cross-Linugal Consistency.
''')
with st.container():
left_co, cent_co,last_co = st.columns(3)
with cent_co:
st.image("./style/consistency.png",
# caption="SeaEval data range",
width=500)
st.markdown("##### Evaluation with enhanced cross-lingual capabilities.")
st.markdown(''':star: How models perform according to different (paraphrased) instructions?
:balloon: Each dataset is equipped with 5 different prompts to avoid randomness introduced by instructions,
which is non-negligible..
''')
st.markdown(''':star: Multilingual accuracy and performance consistency across languages.
:balloon: If you can answer the question in your native language, can you answer the same question
correctly in your second/third language?
''')
st.divider()
with st.container():
st.markdown("##### Citations")
st.markdown('''
```
@article{SeaEval,
title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning},
author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.},
journal={NAACL},
year={2024}
}
```
''')
def cross_lingual_consistency():
st.title("Task: Cross-Lingual Consistency")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = [
'Cross-MMLU',
'Cross-XQUAD',
'Cross-LogiQA',
]
category_one_dict = {
'Zero Shot': 'zero_shot',
'Few Shot' : 'few_shot'
}
category_two_dict = {
'Cross-MMLU' : 'cross_mmlu_no_prompt',
'Cross-XQUAD' : 'cross_xquad_no_prompt',
'Cross-LogiQA' : 'cross_logiqa_no_prompt',
}
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Zero or Few Shot', filters_levelone)
with center:
category_two = st.selectbox('Dataset', filters_leveltwo)
with middle:
model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B'])
with right:
sort = st.selectbox('Sort (For Chart)', ['Accuracy','Cross-Lingual Consistency', 'AC3',
'English', 'Chinese', 'Spanish', 'Vietnamese'])
sortby = 'Ascending'
if category_one or category_two or sort or sortby:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw('cross_lingual', category_one, category_two, sort, sortby, model_size_range)
def cultural_reasoning():
st.title("Task: Cultural Reasoning")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = [
'SG-EVAL-v2-MCQ',
'SG-EVAL-v2-Open-Ended',
'CN-EVAL',
'PH-EVAL',
'US-EVAL'
]
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'
}
category_two_dict = {
'SG-EVAL-v2-MCQ' : 'sg_eval_v2_mcq_no_prompt',
'SG-EVAL-v2-Open-Ended' : 'sg_eval_v2_open',
'US-EVAL' : 'us_eval',
'CN-EVAL' : 'cn_eval',
'PH-EVAL' : 'ph_eval'
}
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Zero or Few Shot', filters_levelone)
with center:
category_two = st.selectbox('Dataset', filters_leveltwo)
with middle:
model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B'])
sortby = 'Ascending'
if category_one or category_two or sortby:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw('cultural_reasoning', category_one, category_two, 'Accuracy', sortby, model_size_range)
def general_reasoning():
st.title("Task: General Reasoning")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = [
'IndoMMLU',
'MMLU',
'CMMLU',
'C-Eval',
#'ZBench',
]
category_one_dict = {
'Zero Shot': 'zero_shot',
'Few Shot' : 'few_shot'
}
category_two_dict = {
'IndoMMLU': 'indommlu_no_prompt',
'MMLU' : 'mmlu_no_prompt',
'C-Eval' : 'c_eval',
'CMMLU' : 'cmmlu_no_prompt',
#'ZBench' : 'zbench',
}
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Zero or Few Shot', filters_levelone)
with center:
category_two = st.selectbox('Dataset', filters_leveltwo)
with middle:
model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B'])
sortby = 'Ascending'
if category_one or category_two or sortby:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw('general_reasoning', category_one, category_two, 'Accuracy', sortby, model_size_range)
def flores():
st.title("Task: FLORES-Translation")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = [
'Indonesian to English',
'Vitenamese to English',
'Chinese to English',
'Malay to English'
]
category_one_dict = {
'Zero Shot': 'zero_shot',
'Few Shot' : 'few_shot'
}
category_two_dict = {
'Indonesian to English': 'ind2eng',
'Vitenamese to English': 'vie2eng',
'Chinese to English' : 'zho2eng',
'Malay to English' : 'zsm2eng'
}
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Zero or Few Shot', filters_levelone)
with center:
category_two = st.selectbox('Dataset', filters_leveltwo)
with middle:
model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B'])
sortby = 'Ascending'
if category_one or category_two or sortby:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw('flores_translation', category_one, category_two, 'BLEU', sortby, model_size_range)
st.markdown('For translation tasks, BLEU score is used as the evaluation metric. However, it is sensitive to the length of the sentence and the truncation of model outputs may not functioning properly. If found obvious discrepencies, it might from the truncation inaccruacy. Please contact for correction.')
def emotion():
st.title("Task: Emotion")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = [
'Indonesian Emotion Classification',
'SST2',
]
category_one_dict = {'Zero Shot': 'zero_shot',
'Few Shot': 'few_shot'}
category_two_dict = {
'Indonesian Emotion Classification': 'ind_emotion',
'SST2' : 'sst2'
}
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Zero or Few Shot', filters_levelone)
with center:
category_two = st.selectbox('Dataset', filters_leveltwo)
with middle:
model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B'])
sortby = 'Ascending'
if category_one or category_two or sortby:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw('emotion', category_one, category_two, 'Accuracy', sortby, model_size_range)
def dialogue():
st.title("Task: Dialogue")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = [
'DREAM',
'SAMSum',
'DialogSum',
]
category_one_dict = {
'Zero Shot': 'zero_shot',
'Few Shot' : 'few_shot'
}
category_two_dict = {
'DREAM' : 'dream',
'SAMSum' : 'samsum',
'DialogSum': 'dialogsum'
}
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Zero or Few Shot', filters_levelone)
with center:
category_two = st.selectbox('Dataset', filters_leveltwo)
with right:
if category_two == 'DREAM':
sort = st.selectbox('Sort', ['Accuracy'])
else:
sort = st.selectbox('Sort', ['Average', 'ROUGE-1', 'ROUGE-2', 'ROUGE-L'])
with middle:
model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B'])
sortby = 'Ascending'
if category_one or category_two or sort or sortby:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw('dialogue', category_one, category_two, sort, sortby, model_size_range)
def fundamental_nlp_tasks():
st.title("Task: Fundamental NLP Tasks")
filters_levelone = ['Zero Shot', 'Few Shot']
filters_leveltwo = ['OCNLI', 'C3', 'COLA', 'QQP', 'MNLI', 'QNLI', 'WNLI', 'RTE', 'MRPC']
category_one_dict = {
'Zero Shot': 'zero_shot',
'Few Shot' : 'few_shot'
}
category_two_dict = {
'OCNLI': 'ocnli',
'C3' : 'c3',
'COLA' : 'cola',
'QQP' : 'qqp',
'MNLI' : 'mnli',
'QNLI' : 'qnli',
'WNLI' : 'wnli',
'RTE' : 'rte',
'MRPC' : 'mrpc'
}
left, center, middle, _, right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
category_one = st.selectbox('Zero or Few Shot', filters_levelone)
with center:
category_two = st.selectbox('Dataset', filters_leveltwo)
with middle:
model_size_range = st.selectbox('Model Size', ['All', '<10B', '10B-30B', '>30B'])
sortby = 'Ascending'
if category_one or category_two or sortby:
category_one = category_one_dict[category_one]
category_two = category_two_dict[category_two]
draw('fundamental_nlp_tasks', category_one, category_two, 'Accuracy', sortby, model_size_range)
|