File size: 6,603 Bytes
84f8d96
 
 
 
b0d85b3
 
 
 
84f8d96
 
 
 
 
 
 
 
b0d85b3
 
 
 
84f8d96
b0d85b3
 
 
 
84f8d96
b0d85b3
 
 
 
84f8d96
b0d85b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fe4068
b0d85b3
 
 
 
1fe4068
b0d85b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fe4068
 
 
 
 
 
 
 
 
 
 
 
92846d4
 
 
 
 
b6fd48d
 
 
ed4682d
92846d4
 
c90636b
 
 
 
 
 
84f8d96
9e51710
 
 
 
 
 
 
84f8d96
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import pandas as pd

# Define the data
data = {
    "Original Name"      : [],
    "Proper Display Name": [],
    "Link"               : [],
    "Model Size"         : [],
}

# Add model information to the
data['Original Name'].append('gemma-2-2b-it')
data['Proper Display Name'].append('Gemma-2-2B-IT')
data['Link'].append('https://huggingface.co/google/gemma-2-2b-it')
data['Model Size'].append('2')

data['Original Name'].append('gemma-2-9b-it')
data['Proper Display Name'].append('Gemma-2-9B-IT')
data['Link'].append('https://huggingface.co/google/gemma-2-9b-it')
data['Model Size'].append('9')

data['Original Name'].append('GPT4o_0513')
data['Proper Display Name'].append('GPT4o-0513')
data['Link'].append('https://openai.com/index/hello-gpt-4o/')
data['Model Size'].append('99999')

data['Original Name'].append('llama3-8b-cpt-sea-lionv2-base')
data['Proper Display Name'].append('Llama3-8B-CPT-SEA-Lion-v2-Base')
data['Link'].append('https://huggingface.co/aisingapore/llama3-8b-cpt-sea-lionv2-base')
data['Model Size'].append('8')

data['Original Name'].append('llama3-8b-cpt-sea-lionv2-instruct')
data['Proper Display Name'].append('Llama3-8B-CPT-SEA-Lion-v2-Instruct')
data['Link'].append('https://huggingface.co/aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct')
data['Model Size'].append('8')

data['Original Name'].append('Meta-Llama-3-8B')
data['Proper Display Name'].append('Meta-Llama-3-8B')
data['Link'].append('https://ai.meta.com/blog/meta-llama-3/')
data['Model Size'].append('8')

data['Original Name'].append('Meta-Llama-3-8B-Instruct')
data['Proper Display Name'].append('Meta-Llama-3-8B-Instruct')
data['Link'].append('https://ai.meta.com/blog/meta-llama-3/')
data['Model Size'].append('8')

data['Original Name'].append('Meta-Llama-3-70B-Instruct')
data['Proper Display Name'].append('Meta-Llama-3-70B-Instruct')
data['Link'].append('https://ai.meta.com/blog/meta-llama-3/')
data['Model Size'].append('70')

data['Original Name'].append('Meta-Llama-3.1-8B')
data['Proper Display Name'].append('Meta-Llama-3.1-8B')
data['Link'].append('https://ai.meta.com/blog/meta-llama-3-1/')
data['Model Size'].append('8')

data['Original Name'].append('Meta-Llama-3.1-8B-Instruct')
data['Proper Display Name'].append('Meta-Llama-3.1-8B-Instruct')
data['Link'].append('https://ai.meta.com/blog/meta-llama-3-1/') 
data['Model Size'].append('8')

data['Original Name'].append('Meta-Llama-3.1-70B')
data['Proper Display Name'].append('Meta-Llama-3.1-70B')
data['Link'].append('https://ai.meta.com/blog/meta-llama-3-1/')
data['Model Size'].append('70')

data['Original Name'].append('Meta-Llama-3.1-70B-Instruct')
data['Proper Display Name'].append('Meta-Llama-3.1-70B-Instruct')
data['Link'].append('https://ai.meta.com/blog/meta-llama-3-1/')
data['Model Size'].append('70')

data['Original Name'].append('Qwen2_5_0_5B_Instruct')
data['Proper Display Name'].append('Qwen2.5-0.5B-Instruct')
data['Link'].append('https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct')
data['Model Size'].append('0.5')

data['Original Name'].append('Qwen2_5_1_5B_Instruct')
data['Proper Display Name'].append('Qwen2.5-1.5B-Instruct')
data['Link'].append('https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct')
data['Model Size'].append('1.5')

data['Original Name'].append('Qwen2_5_3B_Instruct')
data['Proper Display Name'].append('Qwen2.5-3B-Instruct')
data['Link'].append('https://huggingface.co/Qwen/Qwen2.5-3B-Instruct')
data['Model Size'].append('3')

data['Original Name'].append('Qwen2_5_7B_Instruct')
data['Proper Display Name'].append('Qwen2.5-7B-Instruct')
data['Link'].append('https://huggingface.co/Qwen/Qwen2.5-7B-Instruct')
data['Model Size'].append('7')

data['Original Name'].append('Qwen2_5_14B_Instruct')
data['Proper Display Name'].append('Qwen2.5-14B-Instruct')
data['Link'].append('https://huggingface.co/Qwen/Qwen2.5-14B-Instruct')
data['Model Size'].append('14')

data['Original Name'].append('Qwen2_5_32B_Instruct')
data['Proper Display Name'].append('Qwen2.5-32B-Instruct')
data['Link'].append('https://huggingface.co/Qwen/Qwen2.5-32B-Instruct')
data['Model Size'].append('32')

data['Original Name'].append('Qwen2_5_72B_Instruct')
data['Proper Display Name'].append('Qwen2.5-72B-Instruct')
data['Link'].append('https://huggingface.co/Qwen/Qwen2.5-72B-Instruct')
data['Model Size'].append('72')

data['Original Name'].append('Qwen2-7B-Instruct')
data['Proper Display Name'].append('Qwen2-7B-Instruct')
data['Link'].append('https://huggingface.co/Qwen/Qwen2-7B-Instruct')
data['Model Size'].append('7')

data['Original Name'].append('Qwen2-72B-Instruct')
data['Proper Display Name'].append('Qwen2-72B-Instruct')
data['Link'].append('https://huggingface.co/Qwen/Qwen2-72B-Instruct')
data['Model Size'].append('72')

data['Original Name'].append('SeaLLMs-v3-7B-Chat')
data['Proper Display Name'].append('SeaLLMs-v3-7B-Chat')
data['Link'].append('https://arxiv.org/abs/2407.19672')
data['Model Size'].append('7')

data['Original Name'].append('gemma2-9b-cpt-sea-lionv3-instruct')
data['Proper Display Name'].append('Gemma2-9B-CPT-SEA-Lion-v3-Instruct')
data['Link'].append('https://huggingface.co/aisingapore/gemma2-9b-cpt-sea-lionv3-instruct')
data['Model Size'].append('9')


data['Original Name'].append('llama3-8b-cpt-sea-lionv2.1-instruct')
data['Proper Display Name'].append('Llama3-8B-CPT-SEA-LION-v2.1-Instruct')
data['Link'].append('https://huggingface.co/aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct')
data['Model Size'].append('8')


data['Original Name'].append('Gemma-2-9b-it-sg-ultrachat-sft')
data['Proper Display Name'].append('Gemma-2-9B-IT-SG-Ultrachat-SFT')
data['Link'].append('https://huggingface.co/google/gemma-2-9b-it-sg-ultrachat-sft')
data['Model Size'].append('9')

data['Original Name'].append('meralion-merged-llama3-8b-sg-inst-avg-diff')
data['Proper Display Name'].append('Llama-3-MERaLiON-8B-Instruct')
data['Link'].append('https://huggingface.co/MERaLiON/LLaMA-3-MERaLiON-8B-Instruct')
data['Model Size'].append('8')


data['Original Name'].append('Sailor2-8B-Chat')
data['Proper Display Name'].append('Sailor2-8B-Chat')
data['Link'].append('https://huggingface.co/sail/Sailor2-8B-Chat')
data['Model Size'].append('8')



data['Original Name'].append('llama3.1-70b-cpt-sea-lionv3-instruct')
data['Proper Display Name'].append('Llama3.1-70B-CPT-SEA-LION-v3-Instruct')
data['Link'].append('https://huggingface.co/aisingapore/llama3.1-70b-cpt-sea-lionv3-instruct')
data['Model Size'].append('8')



def get_dataframe():
    """
    Returns a DataFrame with the data and drops rows with missing values.
    """
    df = pd.DataFrame(data)
    return df.dropna(axis=0)