Spaces:
Sleeping
Sleeping
Update README.md
Browse files
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
title: TweetGPT
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: blue
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.34.0
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
@@ -144,33 +144,33 @@ We used Weights and Biases (WandB) for tracking and visualizing our machine lear
|
|
144 |
##### 4.5.1 Evaluation Metrics
|
145 |
|
146 |
- **Steps per Second**
|
147 |
-
![Steps per Second](
|
148 |
|
149 |
- **Runtime**
|
150 |
-
![Runtime](
|
151 |
|
152 |
- **Samples per Second**
|
153 |
-
![Samples per Second](
|
154 |
|
155 |
- **Loss**
|
156 |
-
![Loss](
|
157 |
|
158 |
##### 4.5.2 Training Metrics
|
159 |
|
160 |
- **Gradient Norm**
|
161 |
-
![Gradient Norm](
|
162 |
|
163 |
- **Global Step**
|
164 |
-
![Global Step](
|
165 |
|
166 |
- **Loss**
|
167 |
-
![Training Loss](
|
168 |
|
169 |
- **Learning Rate**
|
170 |
-
![Learning Rate](
|
171 |
|
172 |
- **Epoch**
|
173 |
-
![Epoch](
|
174 |
|
175 |
## 5 Discussion
|
176 |
|
@@ -212,4 +212,4 @@ Future research could explore:
|
|
212 |
|
213 |
## 6 Conclusion
|
214 |
|
215 |
-
In this project, we analyzed the communication strategies of German political parties on Twitter using a fine-tuned GPT-2 model. Our results demonstrate the potential of NLP techniques in political communication analysis. Future research could build on these findings to explore more advanced applications and address the ethical implications of AI in social media.
|
|
|
1 |
---
|
2 |
title: TweetGPT
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.34.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
|
|
144 |
##### 4.5.1 Evaluation Metrics
|
145 |
|
146 |
- **Steps per Second**
|
147 |
+
![Steps per Second](./WandB_Training_Evaluation/eval_stepspersecond.png)
|
148 |
|
149 |
- **Runtime**
|
150 |
+
![Runtime](./WandB_Training_Evaluation/eval_runtime.png)
|
151 |
|
152 |
- **Samples per Second**
|
153 |
+
![Samples per Second](./WandB_Training_Evaluation/eval_samplespersecond.png)
|
154 |
|
155 |
- **Loss**
|
156 |
+
![Loss](./WandB_Training_Evaluation/eval_loss.png)
|
157 |
|
158 |
##### 4.5.2 Training Metrics
|
159 |
|
160 |
- **Gradient Norm**
|
161 |
+
![Gradient Norm](./WandB_Training_Evaluation/train_gradnorm.png)
|
162 |
|
163 |
- **Global Step**
|
164 |
+
![Global Step](./WandB_Training_Evaluation/train_globalstep.png)
|
165 |
|
166 |
- **Loss**
|
167 |
+
![Training Loss](./WandB_Training_Evaluation/train_loss.png)
|
168 |
|
169 |
- **Learning Rate**
|
170 |
+
![Learning Rate](./WandB_Training_Evaluation/train_learningrate.png)
|
171 |
|
172 |
- **Epoch**
|
173 |
+
![Epoch](./WandB_Training_Evaluation/train_epoch.png)
|
174 |
|
175 |
## 5 Discussion
|
176 |
|
|
|
212 |
|
213 |
## 6 Conclusion
|
214 |
|
215 |
+
In this project, we analyzed the communication strategies of German political parties on Twitter using a fine-tuned GPT-2 model. Our results demonstrate the potential of NLP techniques in political communication analysis. Future research could build on these findings to explore more advanced applications and address the ethical implications of AI in social media.
|