ifisch commited on
Commit
e82503d
·
verified ·
1 Parent(s): 3275ef9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -1,12 +1,12 @@
1
  ---
2
  title: TweetGPT
3
- emoji: 🐦
4
- colorFrom: blue
5
  colorTo: blue
6
  sdk: streamlit
7
  sdk_version: 1.34.0
8
  app_file: app.py
9
- pinned: false
10
  license: apache-2.0
11
  ---
12
 
@@ -144,33 +144,33 @@ We used Weights and Biases (WandB) for tracking and visualizing our machine lear
144
  ##### 4.5.1 Evaluation Metrics
145
 
146
  - **Steps per Second**
147
- ![Steps per Second](.\WandB_Training_Evaluation\eval_stepspersecond.png)
148
 
149
  - **Runtime**
150
- ![Runtime](.\WandB_Training_Evaluation\eval_runtime.png)
151
 
152
  - **Samples per Second**
153
- ![Samples per Second](.\WandB_Training_Evaluation\eval_samplespersecond.png)
154
 
155
  - **Loss**
156
- ![Loss](.\WandB_Training_Evaluation\eval_loss.png)
157
 
158
  ##### 4.5.2 Training Metrics
159
 
160
  - **Gradient Norm**
161
- ![Gradient Norm](.\WandB_Training_Evaluation\train_gradnorm.png)
162
 
163
  - **Global Step**
164
- ![Global Step](.\WandB_Training_Evaluation\train_globalstep.png)
165
 
166
  - **Loss**
167
- ![Training Loss](.\WandB_Training_Evaluation\train_loss.png)
168
 
169
  - **Learning Rate**
170
- ![Learning Rate](.\WandB_Training_Evaluation\train_learningrate.png)
171
 
172
  - **Epoch**
173
- ![Epoch](.\WandB_Training_Evaluation\train_epoch.png)
174
 
175
  ## 5 Discussion
176
 
@@ -212,4 +212,4 @@ Future research could explore:
212
 
213
  ## 6 Conclusion
214
 
215
- In this project, we analyzed the communication strategies of German political parties on Twitter using a fine-tuned GPT-2 model. Our results demonstrate the potential of NLP techniques in political communication analysis. Future research could build on these findings to explore more advanced applications and address the ethical implications of AI in social media.
 
1
  ---
2
  title: TweetGPT
3
+ emoji: 🚀
4
+ colorFrom: purple
5
  colorTo: blue
6
  sdk: streamlit
7
  sdk_version: 1.34.0
8
  app_file: app.py
9
+ pinned: true
10
  license: apache-2.0
11
  ---
12
 
 
144
  ##### 4.5.1 Evaluation Metrics
145
 
146
  - **Steps per Second**
147
+ ![Steps per Second](./WandB_Training_Evaluation/eval_stepspersecond.png)
148
 
149
  - **Runtime**
150
+ ![Runtime](./WandB_Training_Evaluation/eval_runtime.png)
151
 
152
  - **Samples per Second**
153
+ ![Samples per Second](./WandB_Training_Evaluation/eval_samplespersecond.png)
154
 
155
  - **Loss**
156
+ ![Loss](./WandB_Training_Evaluation/eval_loss.png)
157
 
158
  ##### 4.5.2 Training Metrics
159
 
160
  - **Gradient Norm**
161
+ ![Gradient Norm](./WandB_Training_Evaluation/train_gradnorm.png)
162
 
163
  - **Global Step**
164
+ ![Global Step](./WandB_Training_Evaluation/train_globalstep.png)
165
 
166
  - **Loss**
167
+ ![Training Loss](./WandB_Training_Evaluation/train_loss.png)
168
 
169
  - **Learning Rate**
170
+ ![Learning Rate](./WandB_Training_Evaluation/train_learningrate.png)
171
 
172
  - **Epoch**
173
+ ![Epoch](./WandB_Training_Evaluation/train_epoch.png)
174
 
175
  ## 5 Discussion
176
 
 
212
 
213
  ## 6 Conclusion
214
 
215
+ In this project, we analyzed the communication strategies of German political parties on Twitter using a fine-tuned GPT-2 model. Our results demonstrate the potential of NLP techniques in political communication analysis. Future research could build on these findings to explore more advanced applications and address the ethical implications of AI in social media.