import gradio as gr import fastai learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(imgPath): img = PILImage.create(imgPath) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = 'Butterflies vs Moths' description = 'A basic app which checks whether the image uploaded by you is of a butterfly or a moth!' examples = ['butterfly.jpg', 'moth.jpg'] UI = gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(512,512)), outputs=gr.outputs.Label(num_top_classes=3), title=title, description=description, examples=examples ) UI.launch()