MaawaKhalid commited on
Commit
dee7fc8
1 Parent(s): e4b4fe5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -0
app.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
+
4
+ # Load the tokenizer and model
5
+ model_checkpoint = "google/mt5-small"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
7
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
8
+
9
+ def summarize(text):
10
+ inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True)
11
+ outputs = model.generate(inputs, max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
12
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
13
+
14
+ iface = gr.Interface(fn=summarize, inputs="text", outputs="text", title="Text Summarizer", description="Summarize any text using the mT5 model.")
15
+
16
+ iface.launch()