import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load model and tokenizer model_name = "google/flan-t5-large" # You can use "google/flan-t5-xl" for better results if you have more computational resources tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) def generate_blog_post(topic, max_length=1000): prompt = f"Write a detailed blog post about {topic}. The blog post should be informative, engaging, and well-structured." inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True) outputs = model.generate( inputs.input_ids, max_length=max_length, num_return_sequences=1, do_sample=True, top_k=50, top_p=0.95, temperature=0.7, ) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text # Streamlit interface st.title("Blog Post Generator") topic = st.text_input("Enter a topic for your blog post:") max_length = st.slider("Maximum length of the blog post", min_value=100, max_value=1000, value=500, step=50) generate_button = st.button("Generate Blog Post") if generate_button and topic: with st.spinner("Generating blog post... This may take a moment."): blog_post = generate_blog_post(topic, max_length) # Display the generated blog post st.subheader("Generated Blog Post") st.write(blog_post) st.sidebar.title("About") st.sidebar.info( "This app generates a blog post on a given topic using a large language model. " "Enter a topic and click 'Generate Blog Post' to create your content." )