phi2-tsai / app.py
RashiAgarwal's picture
Update app.py
b9d49cf
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, logging
import gradio as gr
model_name = "microsoft/phi-2"
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True
)
model.config.use_cache = False
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
# Loading adapter (trained LORA weights)
# ckpt = '/content/drive/MyDrive/S27/results/checkpoint-500'
# model.load_adapter(ckpt)
adapter_path = 'checkpoint-500'
model.load_adapter(adapter_path)
def inference(prompt):
pipe = pipeline(task="text-generation",model=model,tokenizer=tokenizer,max_length = 100)
result = pipe(f"<s>[INST] {prompt} [/INST]")
return result[0]['generated_text']
INTERFACE = gr.Interface(fn=inference, inputs=[gr.Textbox(label= "Prompt", value= 'what should we do to save time')],
outputs=gr.Text(label= "Generated Text"), title="Language Model Phi-2 fine-tuned with OpenAssistant/oasst-1 dataset using QLoRA strategy",
examples = [['explain transpiration in plants'],]
).launch(debug=True)
# with gr.Blocks() as demo:
# gr.Markdown(
# """
# # Phi2 trained on OpenAssistant/oasst1 dataset
# Start typing below to see the output.
# """)
# prompt = gr.Textbox(label="Prompt")
# output = gr.Textbox(label="Output Box")
# greet_btn = gr.Button("Generate")
# examples = gr.Examples(examples=['write a note on Shakuntala Devi'], ['Tell me about Amitabh Bachchan'], inputs = [prompt], cache_examples=False)
# greet_btn.click(fn=inference, inputs=prompt, outputs=output)
# demo.launch(debug=True)