Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,620 Bytes
0d89801 03bb3c4 0d89801 666dde7 0d89801 666dde7 83cae6c 0d89801 666dde7 f0e8d1f 0d89801 f0e8d1f 0d89801 3e075bb e5bc4b8 0d89801 666dde7 0d89801 6b42d57 0d89801 666dde7 0d89801 666dde7 0d89801 867296e 666dde7 0d89801 867296e 666dde7 e5bc4b8 0d89801 666dde7 0d89801 666dde7 0d89801 666dde7 0d89801 3e075bb 666dde7 e5bc4b8 666dde7 0d89801 e5bc4b8 666dde7 0d89801 666dde7 0d89801 6b42d57 bc5af2e 666dde7 e5bc4b8 0d89801 666dde7 0d89801 bc5af2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import torch
import spaces
import gradio as gr
from diffusers import FluxInpaintPipeline
import random
import numpy as np
MARKDOWN = """
# FLUX.1 Inpainting 🎨
Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos)
for taking it to the next level by enabling inpainting with the FLUX.
"""
MAX_SEED = np.iinfo(np.int32).max
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
@spaces.GPU()
def process(input_image_editor, uploaded_mask, input_text, strength, seed, randomize_seed, num_inference_steps, guidance_scale=3.5, progress=gr.Progress(track_tqdm=True)):
if not input_text:
raise gr.Error("Please enter a text prompt.")
image = input_image_editor['background']
if uploaded_mask is None:
mask_image = input_image_editor['layers'][0]
else:
mask_image = uploaded_mask
if not image:
raise gr.Error("Please upload an image.")
if not mask_image:
raise gr.Error("Please draw or upload a mask on the image.")
width, height = image.size
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=DEVICE).manual_seed(seed)
result = pipe(
prompt=input_text,
image=image,
mask_image=mask_image,
width=width,
height=height,
strength=strength,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
return result, mask_image, seed
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column(scale=1):
input_image_editor_component = gr.ImageEditor(
label='Image',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
input_text_component = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
with gr.Accordion("Advanced Settings", open=False):
strength_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.01,
label="Strength"
)
num_inference_steps = gr.Slider(
minimum=1,
maximum=100,
value=30,
step=1,
label="Number of inference steps"
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
seed_number = gr.Number(
label="Seed",
value=42,
precision=0
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Accordion("Upload a mask", open=False):
uploaded_mask_component = gr.Image(label="Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources=["upload"], type="pil")
submit_button_component = gr.Button(
value='Inpaint', variant='primary')
with gr.Column(scale=1):
output_image_component = gr.Image(
type='pil', image_mode='RGB', label='Generated image')
with gr.Accordion("Debug Info", open=False):
output_mask_component = gr.Image(
type='pil', image_mode='RGB', label='Input mask')
output_seed = gr.Number(label="Used Seed")
submit_button_component.click(
fn=process,
inputs=[
input_image_editor_component,
uploaded_mask_component,
input_text_component,
strength_slider,
seed_number,
randomize_seed,
num_inference_steps,
guidance_scale
],
outputs=[
output_image_component,
output_mask_component,
output_seed
]
)
demo.launch(debug=False, show_error=True) |