Update app.py
Browse files
app.py
CHANGED
@@ -1,106 +1,97 @@
|
|
1 |
-
|
2 |
import streamlit as st
|
|
|
|
|
3 |
from langchain_community.document_loaders import UnstructuredPDFLoader
|
4 |
-
from langchain_text_splitters
|
5 |
-
from
|
6 |
-
from
|
7 |
from langchain_groq import ChatGroq
|
8 |
-
from langchain.
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
documents = loader.load()
|
29 |
-
return documents
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
separator="/n",
|
35 |
-
chunk_size=1000,
|
36 |
chunk_overlap=200
|
37 |
)
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
model="llama-3.1-8b-instant",
|
46 |
-
temperature=0
|
47 |
)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
54 |
)
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
56 |
llm=llm,
|
|
|
57 |
retriever=retriever,
|
58 |
-
memory=memory,
|
59 |
-
verbose=True
|
60 |
)
|
61 |
-
|
|
|
62 |
|
63 |
-
|
64 |
-
st.set_page_config(
|
65 |
-
page_title="Chat with your documents",
|
66 |
-
page_icon="📑",
|
67 |
-
layout="centered"
|
68 |
-
)
|
69 |
|
70 |
-
st.title("📝Chat With your docs 😎")
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
-
st.session_state.chat_history = []
|
75 |
|
76 |
-
|
|
|
77 |
|
78 |
-
if uploaded_file:
|
79 |
-
|
80 |
-
|
|
|
81 |
f.write(uploaded_file.getbuffer())
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
if "conversation_chain" not in st.session_state:
|
87 |
-
st.session_state.conversation_chain = create_chain(st.session_state.vectorstores)
|
88 |
-
|
89 |
-
# Display chat history
|
90 |
-
for message in st.session_state.chat_history:
|
91 |
-
with st.chat_message(message["role"]):
|
92 |
-
st.markdown(message["content"])
|
93 |
|
94 |
-
#
|
95 |
-
|
96 |
|
97 |
-
if
|
98 |
-
|
99 |
-
|
100 |
-
st.markdown(user_input)
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
st.markdown(assistant_response)
|
106 |
-
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
|
|
|
1 |
+
import os
|
2 |
import streamlit as st
|
3 |
+
from huggingface_hub import HfApi
|
4 |
+
|
5 |
from langchain_community.document_loaders import UnstructuredPDFLoader
|
6 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
7 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
8 |
+
from langchain_chroma import Chroma
|
9 |
from langchain_groq import ChatGroq
|
10 |
+
from langchain.chains import RetrievalQA
|
11 |
+
|
12 |
+
# Set the working directory
|
13 |
+
working_dir = os.path.dirname(os.path.abspath((__file__)))
|
14 |
+
|
15 |
+
secret = os.getenv('GROQ_API_KEY')
|
16 |
+
|
17 |
+
# Loading the embedding model
|
18 |
+
embedding = HuggingFaceEmbeddings()
|
19 |
+
|
20 |
+
# Load the llm from Groq
|
21 |
+
llm = ChatGroq(
|
22 |
+
model="deepseek-r1-distill-llama-70b",
|
23 |
+
temperature=0
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
def process_document_to_chroma_db(file_name):
|
28 |
+
"""Process the document and load it into Chroma DB."""
|
29 |
+
# Load the document using unstructured PDF loader
|
30 |
+
loader = UnstructuredPDFLoader(f"{working_dir}/{file_name}")
|
31 |
documents = loader.load()
|
|
|
32 |
|
33 |
+
# Split the text into chunks
|
34 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
35 |
+
chunk_size=2000,
|
|
|
|
|
36 |
chunk_overlap=200
|
37 |
)
|
38 |
+
texts = text_splitter.split_documents(documents)
|
39 |
+
|
40 |
+
# Load the documents into Chroma vectorstore
|
41 |
+
vectordb = Chroma.from_documents(
|
42 |
+
documents=texts,
|
43 |
+
embedding=embedding,
|
44 |
+
persist_directory=f"{working_dir}/doc_vectorstore"
|
|
|
|
|
45 |
)
|
46 |
+
return 0
|
47 |
+
|
48 |
+
|
49 |
+
def answer_question(user_question):
|
50 |
+
"""Answer the user's question using the trained model."""
|
51 |
+
# Load the persistent vectordb
|
52 |
+
vectordb = Chroma(
|
53 |
+
persist_directory=f"{working_dir}/doc_vectorstore",
|
54 |
+
embedding_function=embedding
|
55 |
)
|
56 |
+
|
57 |
+
# Retriever
|
58 |
+
retriever = vectordb.as_retriever()
|
59 |
+
|
60 |
+
# Create a chain to answer user question using DeepSeek-R1
|
61 |
+
qa_chain = RetrievalQA.from_chain_type(
|
62 |
llm=llm,
|
63 |
+
chain_type="stuff",
|
64 |
retriever=retriever,
|
|
|
|
|
65 |
)
|
66 |
+
response = qa_chain.invoke({"query": user_question})
|
67 |
+
answer = response["result"]
|
68 |
|
69 |
+
return answer
|
|
|
|
|
|
|
|
|
|
|
70 |
|
|
|
71 |
|
72 |
+
# Streamlit interface
|
73 |
+
st.title("🐋 DeepSeek-R1 - Document RAG")
|
|
|
74 |
|
75 |
+
# File uploader widget
|
76 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
77 |
|
78 |
+
if uploaded_file is not None:
|
79 |
+
# Define save path and save the uploaded file
|
80 |
+
save_path = os.path.join(working_dir, uploaded_file.name)
|
81 |
+
with open(save_path, "wb") as f:
|
82 |
f.write(uploaded_file.getbuffer())
|
83 |
|
84 |
+
# Process the document
|
85 |
+
process_document_to_chroma_db(uploaded_file.name)
|
86 |
+
st.info("Document Processed Successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
# Text widget to get user input
|
89 |
+
user_question = st.text_area("Ask your question about the document")
|
90 |
|
91 |
+
if st.button("Answer"):
|
92 |
+
# Answer the user's question
|
93 |
+
answer = answer_question(user_question)
|
|
|
94 |
|
95 |
+
# Display the response
|
96 |
+
st.markdown("### DeepSeek-R1 Response")
|
97 |
+
st.markdown(answer)
|
|
|
|