Stoic / app.py
Manel's picture
Update app.py
ff73727 verified
import os
import time
import base64
import logging
import torch
import streamlit as st
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFacePipeline
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.vectorstores import Chroma
from templates import all_templates
@st.cache_resource(show_spinner=False)
def load_model(model_name):
logger.info("Loading model ..")
start_time = time.time()
if model_name=='llama':
from langchain.llms import CTransformers
model = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML",
model_file = 'llama-2-7b-chat.ggmlv3.q4_0.bin', #'llama-2-7b-chat.ggmlv3.q4_K.bin',
model_type='llama', gpu_layers=0) # config={"context_length":2048,})
tokenizer = None
elif model_name=='mistral':
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id="filipealmeida/Mistral-7B-Instruct-v0.1-sharded"
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16)
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, quantization_config=quant_config, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
print(f"Model Loading Time : {time.time() - start_time}.")
logger.info(f"Model Loading Time : {time.time() - start_time} .")
return model, tokenizer
@st.cache_resource(show_spinner=False)
def load_db(device, local_embed=False, CHROMA_PATH = './ChromaDB'):
"""
Load vector embeddings and Chroma database
"""
encode_kwargs = {'normalize_embeddings': True}
embed_id = "BAAI/bge-large-en-v1.5"
start_time = time.time()
#TODO : LOOK INTO LOADING ONLY A SINGLE EMBEDDING FILE TO REDUCE LOADING TIME
if local_embed:
from transformers import AutoModel
PATH_TO_EMBEDDING_FOLDER = ""
# TODO : load only pytorch bin file
embeddings = AutoModel.from_pretrained(PATH_TO_EMBEDDING_FOLDER, trust_remote_code=True)
embeddings = HuggingFaceBgeEmbeddings(model_name=" ", model_kwargs={"trust_remote_code":True})
logger.info('Loading embeddings locally.')
else:
embeddings = HuggingFaceBgeEmbeddings(model_name=embed_id , model_kwargs={"device": device}, encode_kwargs=encode_kwargs)
logger.info('Loading embeddings from Hub.')
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
logger.info(f"Vector Embeddings and Chroma Database Loading Time : {time.time() - start_time} .")
print(f"Vector Embeddings and Chroma Database Loading Time : {time.time() - start_time} .")
return db
def wrap_model(model, tokenizer):
"""wrap transformers pipeline with HuggingFacePipeline
"""
text_generation_pipeline = pipeline(
model=model,
tokenizer=tokenizer,
task="text-generation",
temperature=0.5,
repetition_penalty=2.1,
no_repeat_ngram_size=3,
max_new_tokens=400,
num_beams=2,
pad_token_id=2,
do_sample=True)
HF_pipeline = HuggingFacePipeline(pipeline=text_generation_pipeline)
return HF_pipeline
def fetch_context(db, model, model_name, query, template, use_compressor=True):
"""
Perform similarity search and retrieve related context to query.
I have stored large documents in db so I can apply compressor on the set of retrived documents to
make sure that returned compressed context is relevant to the query.
"""
if use_compressor:
start_time = time.time()
if model_name=='llama':
compressor = LLMChainExtractor.from_llm(model)
compressor.llm_chain.prompt.template = template['llama_rag_template']
elif model_name=='mistral':
global HF_pipeline_model
HF_pipeline_model = wrap_model(model)
compressor = LLMChainExtractor.from_llm(HF_pipeline_model)
compressor.llm_chain.prompt.template = template['rag_template']
retriever = db.as_retriever(search_type = "mmr")
compression_retriever = ContextualCompressionRetriever(base_compressor=compressor,
base_retriever=retriever)
#logger.info(f"User Query : {query}")
compressed_docs = compression_retriever.get_relevant_documents(query)
#logger.info(f"Retrieved Compressed Docs : {compressed_docs}")
print(f"Compressed context Generation Time: {time.time() - start_time}")
return compressed_docs
docs = db.max_marginal_relevance_search(query)
#logger.info(f"Retrieved Docs : {docs}")
return docs
def format_context(docs):
"""
clean and format chunks into documents to pass as context
"""
cleaned_docs = [doc for doc in docs if ">>>" not in doc.page_content]
return "\n\n".join(doc.page_content for doc in cleaned_docs)
def llm_chain_with_context(model, model_name, query, context, template):
"""
Run simple chain with formatted prompt including query and retrieved context and the underlying model to generate a response.
"""
formated_context = format_context(context)
# Give a precise answer to the question based on the context. Don't be verbose.
start_chain_time = time.time()
if model_name=='llama':
prompt_template = PromptTemplate(input_variables=['context', 'user_query'], template = template['llama_prompt_template'])
llm_chain = LLMChain(llm=model, prompt=prompt_template)
elif model_name=='mistral':
prompt_template = PromptTemplate(input_variables=['context', 'user_query'], template = template['prompt_template'])
llm_chain = LLMChain(llm=HF_pipeline_model, prompt=prompt_template)
print(f"LLMChain Setup Time: {time.time() - start_chain_time}")
start_inference_time = time.time()
output = llm_chain.predict(user_query=query, context=formated_context)
print(f"LLM Inference Time: {time.time() - start_inference_time}")
return output
def generate_response(query, model, template):
start_time = time.time()
progress_text = "Running Inference. Please wait."
my_bar = st.progress(0, text=progress_text)
# fill those as appropriate
my_bar.progress(0.1, "Loading Model. Please wait.")
time.sleep(2)
my_bar.progress(0.4, "Running RAG. Please wait.")
context = fetch_context(db, model, model_name, query, template)
my_bar.progress(0.6, "Generating Answer. Please wait.")
response = llm_chain_with_context(model, model_name, query, context, template)
print(f"Total Execution Time: {time.time() - start_time}")
logger.info(f"Total Execution Time: {time.time() - start_time}")
my_bar.progress(0.9, "Post Processing. Please wait.")
response = post_process(response)
my_bar.progress(1.0, "Done")
time.sleep(1)
my_bar.empty()
return response
def stream_to_screen(response):
for word in response.split():
yield word + " "
time.sleep(0.15)
def post_process(response):
"""Remove if last sentence is unfinished"""
if response[-1] != '.':
sentences = response.split('.')
del sentences[-1]
if not sentences[-1].isalpha():
del sentences[-1]
return '.'.join(sentences) + '.'
return response
# show background image
def convert_to_base64(bin_file):
with open(bin_file, 'rb') as f:
data = f.read()
return base64.b64encode(data).decode()
def set_as_background_img(png_file):
bin_str = convert_to_base64(png_file)
background_img = '''
<link href='https://fonts.googleapis.com/css?family=Libre Baskerville' rel='stylesheet'>
<style>
.stApp {
background-image: url("data:image/png;base64,%s");
background-size: cover;
background-repeat: no-repeat;
background-attachment: scroll;
}
</style>
''' % bin_str
st.markdown(background_img, unsafe_allow_html=True)
return
if __name__=="__main__":
st.set_page_config(page_title='StoicCyber', page_icon="🏛️", layout="centered", initial_sidebar_state="collapsed")
set_as_background_img('pxfuel.jpg')
# header
original_title = '<h1 style="font-family: Libre Baskerville; color:#faf8f8; font-size: 30px; text-align: left; ">STOIC Ω CYBER</h1>'
st.markdown(original_title, unsafe_allow_html=True)
# hide footer and header
hide_st_style = """
<style>
header {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)
logger = logging.getLogger(__name__)
logging.basicConfig(
filename="app.log",
filemode="a",
format="%(asctime)s.%(msecs)03d %(levelname)s [%(funcName)s] %(message)s",
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S",)
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "llama" if device=="cpu" else "mistral"
logger.info(f"Running {model_name} model for inference on {device}")
print(f"Running {model_name} model for inference on {device}")
# Loading and caching db and model
#bar = st.progress(0, "Loading Database. Please wait.")
#bar.progress(0.05, "Loading Embedding & Database. Please wait.")
db = load_db(device)
#bar.progress(0.5, "Loading Model. Please wait.")
model, tokenizer = load_model(model_name)
#bar.progress(0.9, "Ready to ask? Go ahead and type your question.")
#time.sleep(2)
#bar.empty()
# streamlit chat
user_question = st.chat_input('What do you want to ask ..')
if user_question is not None and user_question!="":
with st.chat_message("Human", avatar="🧔🏻"):
st.write(user_question)
response = generate_response(user_question, model, all_templates)
with st.chat_message("AI", avatar="🏛️"):
st.write(response)
#st.write_stream(stream_to_screen(response))