Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import base64
|
4 |
+
import logging
|
5 |
+
import torch
|
6 |
+
import streamlit as st
|
7 |
+
from langchain.chains import LLMChain
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
from langchain.llms import HuggingFacePipeline
|
10 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
11 |
+
from langchain.retrievers.document_compressors import LLMChainExtractor
|
12 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
13 |
+
from langchain.llms import HuggingFacePipeline
|
14 |
+
from langchain.vectorstores import Chroma
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
@st.cache_resource
|
19 |
+
def load_model(model_name, logger, ):
|
20 |
+
logger.info("Loading model ..")
|
21 |
+
start_time = time.time()
|
22 |
+
|
23 |
+
if model_name=='llama':
|
24 |
+
from langchain.llms import CTransformers
|
25 |
+
|
26 |
+
model = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML", model_file = 'llama-2-7b-chat.ggmlv3.q2_K.bin',
|
27 |
+
model_type='llama', gpu_layers=0, config={"context_length":2048,})
|
28 |
+
tokenizer = None
|
29 |
+
|
30 |
+
elif model_name=='mistral':
|
31 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
32 |
+
|
33 |
+
model_id="filipealmeida/Mistral-7B-Instruct-v0.1-sharded"
|
34 |
+
|
35 |
+
quant_config = BitsAndBytesConfig(
|
36 |
+
load_in_4bit=True,
|
37 |
+
bnb_4bit_quant_type="nf4",
|
38 |
+
bnb_4bit_use_double_quant=True,
|
39 |
+
bnb_4bit_compute_dtype=torch.bfloat16)
|
40 |
+
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, quantization_config=quant_config, device_map="auto")
|
42 |
+
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
44 |
+
tokenizer.pad_token = tokenizer.eos_token
|
45 |
+
|
46 |
+
logger.info(f"Model Loading Time : {time.time() - start_time} .")
|
47 |
+
|
48 |
+
return model, tokenizer
|
49 |
+
|
50 |
+
|
51 |
+
@st.cache_resource
|
52 |
+
def load_db(logger, device, local_embed=False, CHROMA_PATH = './ChromaDB'):
|
53 |
+
"""
|
54 |
+
Load vector embeddings and Chroma database
|
55 |
+
"""
|
56 |
+
encode_kwargs = {'normalize_embeddings': True}
|
57 |
+
embed_id = "BAAI/bge-large-en-v1.5"
|
58 |
+
start_time = time.time()
|
59 |
+
|
60 |
+
#TODO : LOOK INTO LOADING ONLY A SINGLE FILE FROM HF REPO TO REDUCE MEMORY
|
61 |
+
if local_embed:
|
62 |
+
from transformers import AutoModel
|
63 |
+
|
64 |
+
PATH_TO_EMBEDDING_FOLDER = ""
|
65 |
+
# TODO : load only pytorch bin file
|
66 |
+
embeddings = AutoModel.from_pretrained(PATH_TO_EMBEDDING_FOLDER, trust_remote_code=True)
|
67 |
+
embeddings = HuggingFaceBgeEmbeddings(model_name="whatever-model-you-are-using", model_kwargs={"trust_remote_code":True})
|
68 |
+
logger.info('Loading embeddings locally.')
|
69 |
+
# Test the local embeddings
|
70 |
+
embed = embeddings.get_text_embedding("Hello World!")
|
71 |
+
print(len(embed))
|
72 |
+
print(embed[:5])
|
73 |
+
|
74 |
+
else:
|
75 |
+
embeddings = HuggingFaceBgeEmbeddings(model_name=embed_id , model_kwargs={"device": device}, encode_kwargs=encode_kwargs)
|
76 |
+
logger.info('Loading embeddings from Hub.')
|
77 |
+
|
78 |
+
|
79 |
+
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
|
80 |
+
logger.info(f"Vector Embeddings and Chroma Database Loading Time : {time.time() - start_time} .")
|
81 |
+
return db
|
82 |
+
|
83 |
+
|
84 |
+
def wrap_model(model, tokenizer):
|
85 |
+
"""wrap transformers pipeline with HuggingFacePipeline
|
86 |
+
"""
|
87 |
+
text_generation_pipeline = pipeline(
|
88 |
+
model=model,
|
89 |
+
tokenizer=tokenizer,
|
90 |
+
task="text-generation",
|
91 |
+
temperature=0.2,
|
92 |
+
repetition_penalty=1.1,
|
93 |
+
#return_full_text=True,
|
94 |
+
max_new_tokens=1000,
|
95 |
+
pad_token_id=2,
|
96 |
+
do_sample=True)
|
97 |
+
HF_pipeline = HuggingFacePipeline(pipeline=text_generation_pipeline)
|
98 |
+
return HF_pipeline
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
def fetch_context(db, model, query, logger, template, use_compressor=True):
|
103 |
+
"""
|
104 |
+
Perform similarity search and retrieve related context to query.
|
105 |
+
I have stored large documents in db so I can apply compressor on the set of retrived documents to
|
106 |
+
make sure that returned compressed context is relevant to the query.
|
107 |
+
"""
|
108 |
+
if use_compressor:
|
109 |
+
if model_name=='llama':
|
110 |
+
compressor = LLMChainExtractor.from_llm(model)
|
111 |
+
compressor.llm_chain.prompt.template = template['llama_rag_template']
|
112 |
+
|
113 |
+
elif model_name=='mistral':
|
114 |
+
HF_pipeline_model = wrap_model(model)
|
115 |
+
global HF_pipeline_model
|
116 |
+
compressor = LLMChainExtractor.from_llm(HF_pipeline_model)
|
117 |
+
compressor.llm_chain.prompt.template = template['rag_template']
|
118 |
+
|
119 |
+
retriever = db.as_retriever(search_type = "mmr")
|
120 |
+
compression_retriever = ContextualCompressionRetriever(base_compressor=compressor,
|
121 |
+
base_retriever=retriever)
|
122 |
+
logger.info(f"User Query : {query}")
|
123 |
+
compressed_docs = compression_retriever.get_relevant_documents(query)
|
124 |
+
logger.info(f"Retrieved Compressed Docs : {compressed_docs}")
|
125 |
+
|
126 |
+
return compressed_docs
|
127 |
+
|
128 |
+
docs = db.max_marginal_relevance_search(query)
|
129 |
+
logger.info(f"Retrieved Docs : {docs}")
|
130 |
+
|
131 |
+
return docs
|
132 |
+
|
133 |
+
|
134 |
+
def format_context(docs):
|
135 |
+
"""
|
136 |
+
clean and format chunks into documents to pass as context
|
137 |
+
"""
|
138 |
+
cleaned_docs = [doc for doc in docs if ">>>" not in doc.page_content]
|
139 |
+
return "\n\n".join(doc.page_content for doc in cleaned_docs)
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
def llm_chain_with_context(model, model_name, query, context, template, logger):
|
144 |
+
"""
|
145 |
+
Run simple chain with formatted prompt including query and retrieved context and the underlying model to generate a response.
|
146 |
+
"""
|
147 |
+
formated_context = format_context(context)
|
148 |
+
# Give a precise answer to the question based on the context. Don't be verbose.
|
149 |
+
if model_name=='llama':
|
150 |
+
prompt_template = PromptTemplate(input_variables=['context', 'user_query'], template = template['llama_prompt_template'])
|
151 |
+
llm_chain = LLMChain(llm=model, prompt=prompt_template)
|
152 |
+
|
153 |
+
elif model_name=='mistral':
|
154 |
+
prompt_template = PromptTemplate(input_variables=['context', 'user_query'], template = template['prompt_template'])
|
155 |
+
llm_chain = LLMChain(llm=HF_pipeline_model, prompt=prompt_template)
|
156 |
+
|
157 |
+
output = llm_chain.predict(user_query=query, context=formated_context)
|
158 |
+
return output
|
159 |
+
|
160 |
+
|
161 |
+
def generate_response(query, model, template, logger):
|
162 |
+
start_time = time.time()
|
163 |
+
progress_text = "Loading model. Please wait."
|
164 |
+
my_bar = st.progress(0, text=progress_text)
|
165 |
+
context = fetch_context(db, model, model_name, query, template, logger)
|
166 |
+
# fill those as appropriate
|
167 |
+
my_bar.progress(0.1, "Loading Database. Please wait.")
|
168 |
+
|
169 |
+
my_bar.progress(0.3, "Loading Model. Please wait.")
|
170 |
+
|
171 |
+
my_bar.progress(0.5, "Running RAG. Please wait.")
|
172 |
+
|
173 |
+
my_bar.progress(0.7, "Generating Answer. Please wait.")
|
174 |
+
response = llm_chain_with_context(model, model_name, query, context, template, logger)
|
175 |
+
|
176 |
+
logger.info(f"Total Execution Time: {time.time() - start_time}")
|
177 |
+
|
178 |
+
my_bar.progress(0.9, "Post Processing. Please wait.")
|
179 |
+
|
180 |
+
my_bar.progress(1.0, "Done")
|
181 |
+
time. sleep(1)
|
182 |
+
my_bar.empty()
|
183 |
+
return response
|
184 |
+
|
185 |
+
|
186 |
+
# show background image
|
187 |
+
def convert_to_base64(bin_file):
|
188 |
+
with open(bin_file, 'rb') as f:
|
189 |
+
data = f.read()
|
190 |
+
return base64.b64encode(data).decode()
|
191 |
+
|
192 |
+
def set_as_background_img(png_file):
|
193 |
+
bin_str = convert_to_base64(png_file)
|
194 |
+
background_img = '''
|
195 |
+
<link href='https://fonts.googleapis.com/css?family=Libre Baskerville' rel='stylesheet'>
|
196 |
+
<style>
|
197 |
+
.stApp {
|
198 |
+
background-image: url("data:image/png;base64,%s");
|
199 |
+
background-size: cover;
|
200 |
+
background-repeat: no-repeat;
|
201 |
+
background-attachment: scroll;
|
202 |
+
}
|
203 |
+
</style>
|
204 |
+
''' % bin_str
|
205 |
+
st.markdown(background_img, unsafe_allow_html=True)
|
206 |
+
return
|
207 |
+
|
208 |
+
|
209 |
+
if __name__=="__main__":
|
210 |
+
|
211 |
+
st.set_page_config(page_title='StoicCyber', page_icon="🏛️", layout="centered", initial_sidebar_state="collapsed")
|
212 |
+
set_as_background_img('pxfuel.jpg')
|
213 |
+
# header
|
214 |
+
original_title = '<h1 style="font-family: Libre Baskerville; color:#faf8f8; font-size: 30px; text-align: left; ">STOIC Ω CYBER</h1>'
|
215 |
+
st.markdown(original_title, unsafe_allow_html=True)
|
216 |
+
|
217 |
+
user_question = st.chat_input('What do you want to ask ..')
|
218 |
+
|
219 |
+
# hide footer and header
|
220 |
+
hide_st_style = """
|
221 |
+
<style>
|
222 |
+
header {visibility: hidden;}
|
223 |
+
footer {visibility: hidden;}
|
224 |
+
</style>
|
225 |
+
"""
|
226 |
+
st.markdown(hide_st_style, unsafe_allow_html=True)
|
227 |
+
|
228 |
+
# set logger
|
229 |
+
logger = logging.getLogger(__name__)
|
230 |
+
logging.basicConfig(
|
231 |
+
filename="app.log",
|
232 |
+
filemode="a",
|
233 |
+
format="%(asctime)s.%(msecs)03d %(levelname)s [%(funcName)s] %(message)s",
|
234 |
+
level=logging.INFO,
|
235 |
+
datefmt="%Y-%m-%d %H:%M:%S",)
|
236 |
+
|
237 |
+
|
238 |
+
# model to use in spaces depends on the available device
|
239 |
+
device = "cuda" if torch.cuda.is_available() else "cpu
|
240 |
+
|
241 |
+
model_name = "llama" if device=="cpu" else "mistral"
|
242 |
+
|
243 |
+
logger.info(f'Running {model_name} model for inference on {device}')
|
244 |
+
|
245 |
+
|
246 |
+
all_templates = { "llama_prompt_template" : """<s>[INST]\n<<SYS>>\nYou are a stoic teacher that provide guidance and advice inspired by Stoic philosophy on navigating life's challenges with resilience and inner peace. Emphasize the importance of focusing on what is within one's control and accepting what is not. Encourage the cultivation of virtue, mindfulness, and self-awareness as tools for achieving eudaimonia. Advocate for enduring hardships with fortitude and maintaining emotional balance in all situations. Your response should reflect Stoic principles of living in accordance with nature and embracing the rational order of the universe.
|
247 |
+
You should guide the reader towards a fulfilling life focused on virtue rather than external things because living in accordance with virtue leads to eudaimonia or flourishing.
|
248 |
+
context:
|
249 |
+
{context}\n<</SYS>>\n\n
|
250 |
+
question:
|
251 |
+
{user_query}
|
252 |
+
[/INST]""",
|
253 |
+
|
254 |
+
"llmaa_rag_prompt" :"""<s>[INST]\n<<SYS>>\nGiven the following question and context, summarize the parts that are relevant to answer the question. If none of the context is relevant return NO_OUTPUT.\n\n>
|
255 |
+
- Do not mention quotes.\n\n
|
256 |
+
- Reply using a single sentence.\n\n
|
257 |
+
> Context:\n
|
258 |
+
>>>\n{context}\n>>>\n<</SYS>>\n\n
|
259 |
+
Question: {question}\n
|
260 |
+
[/INST]
|
261 |
+
The relevant parts of the context are:
|
262 |
+
""",
|
263 |
+
|
264 |
+
"prompt_template":"""You are a stoic teacher that provide guidance and advice inspired by Stoic philosophy on navigating life's challenges with resilience and inner peace. Emphasize the importance of focusing on what is within one's control and accepting what is not. Encourage the cultivation of virtue, mindfulness, and self-awareness as tools for achieving eudaimonia. Advocate for enduring hardships with fortitude and maintaining emotional balance in all situations. Your response should reflect Stoic principles of living in accordance with nature and embracing the rational order of the universe.
|
265 |
+
You should guide the reader towards a fulfilling life focused on virtue rather than external things because living in accordance with virtue leads to eudaimonia or flourishing.
|
266 |
+
context:
|
267 |
+
{context}
|
268 |
+
|
269 |
+
question:
|
270 |
+
{user_query}
|
271 |
+
|
272 |
+
Answer:
|
273 |
+
""",
|
274 |
+
"rag_prompt" : """Given the following question and context, summarize the parts that are relevant to answer the question. If none of the context is relevant return NO_OUTPUT.\n\n>
|
275 |
+
- Do not mention quotes.\n\n>
|
276 |
+
- Reply using a single sentence.\n\n>
|
277 |
+
|
278 |
+
Question: {question}\n> Context:\n>>>\n{context}\n>>>\nRelevant parts"""}
|
279 |
+
|
280 |
+
|
281 |
+
db = load_db(logger, device)
|
282 |
+
|
283 |
+
model, tokenizer = load_model(model_name, logger)
|
284 |
+
|
285 |
+
# streamlit chat
|
286 |
+
if user_question is not None and user_question!="":
|
287 |
+
with st.chat_message("Human", avatar="🧔🏻"):
|
288 |
+
st.write(user_question)
|
289 |
+
response = generate_response(user_question, model, all_templates, logger)
|
290 |
+
with st.chat_message("AI", avatar="🏛️"):
|
291 |
+
st.write(response)
|
292 |
+
|
293 |
+
|